1*> \brief \b CLAGS2 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CLAGS2 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clags2.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clags2.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clags2.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, 22* SNV, CSQ, SNQ ) 23* 24* .. Scalar Arguments .. 25* LOGICAL UPPER 26* REAL A1, A3, B1, B3, CSQ, CSU, CSV 27* COMPLEX A2, B2, SNQ, SNU, SNV 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such 37*> that if ( UPPER ) then 38*> 39*> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) 40*> ( 0 A3 ) ( x x ) 41*> and 42*> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) 43*> ( 0 B3 ) ( x x ) 44*> 45*> or if ( .NOT.UPPER ) then 46*> 47*> U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) 48*> ( A2 A3 ) ( 0 x ) 49*> and 50*> V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) 51*> ( B2 B3 ) ( 0 x ) 52*> where 53*> 54*> U = ( CSU SNU ), V = ( CSV SNV ), 55*> ( -SNU**H CSU ) ( -SNV**H CSV ) 56*> 57*> Q = ( CSQ SNQ ) 58*> ( -SNQ**H CSQ ) 59*> 60*> The rows of the transformed A and B are parallel. Moreover, if the 61*> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry 62*> of A is not zero. If the input matrices A and B are both not zero, 63*> then the transformed (2,2) element of B is not zero, except when the 64*> first rows of input A and B are parallel and the second rows are 65*> zero. 66*> \endverbatim 67* 68* Arguments: 69* ========== 70* 71*> \param[in] UPPER 72*> \verbatim 73*> UPPER is LOGICAL 74*> = .TRUE.: the input matrices A and B are upper triangular. 75*> = .FALSE.: the input matrices A and B are lower triangular. 76*> \endverbatim 77*> 78*> \param[in] A1 79*> \verbatim 80*> A1 is REAL 81*> \endverbatim 82*> 83*> \param[in] A2 84*> \verbatim 85*> A2 is COMPLEX 86*> \endverbatim 87*> 88*> \param[in] A3 89*> \verbatim 90*> A3 is REAL 91*> On entry, A1, A2 and A3 are elements of the input 2-by-2 92*> upper (lower) triangular matrix A. 93*> \endverbatim 94*> 95*> \param[in] B1 96*> \verbatim 97*> B1 is REAL 98*> \endverbatim 99*> 100*> \param[in] B2 101*> \verbatim 102*> B2 is COMPLEX 103*> \endverbatim 104*> 105*> \param[in] B3 106*> \verbatim 107*> B3 is REAL 108*> On entry, B1, B2 and B3 are elements of the input 2-by-2 109*> upper (lower) triangular matrix B. 110*> \endverbatim 111*> 112*> \param[out] CSU 113*> \verbatim 114*> CSU is REAL 115*> \endverbatim 116*> 117*> \param[out] SNU 118*> \verbatim 119*> SNU is COMPLEX 120*> The desired unitary matrix U. 121*> \endverbatim 122*> 123*> \param[out] CSV 124*> \verbatim 125*> CSV is REAL 126*> \endverbatim 127*> 128*> \param[out] SNV 129*> \verbatim 130*> SNV is COMPLEX 131*> The desired unitary matrix V. 132*> \endverbatim 133*> 134*> \param[out] CSQ 135*> \verbatim 136*> CSQ is REAL 137*> \endverbatim 138*> 139*> \param[out] SNQ 140*> \verbatim 141*> SNQ is COMPLEX 142*> The desired unitary matrix Q. 143*> \endverbatim 144* 145* Authors: 146* ======== 147* 148*> \author Univ. of Tennessee 149*> \author Univ. of California Berkeley 150*> \author Univ. of Colorado Denver 151*> \author NAG Ltd. 152* 153*> \ingroup complexOTHERauxiliary 154* 155* ===================================================================== 156 SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, 157 $ SNV, CSQ, SNQ ) 158* 159* -- LAPACK auxiliary routine -- 160* -- LAPACK is a software package provided by Univ. of Tennessee, -- 161* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 162* 163* .. Scalar Arguments .. 164 LOGICAL UPPER 165 REAL A1, A3, B1, B3, CSQ, CSU, CSV 166 COMPLEX A2, B2, SNQ, SNU, SNV 167* .. 168* 169* ===================================================================== 170* 171* .. Parameters .. 172 REAL ZERO, ONE 173 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 174* .. 175* .. Local Scalars .. 176 REAL A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12, 177 $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, SNL, 178 $ SNR, UA11R, UA22R, VB11R, VB22R 179 COMPLEX B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11, 180 $ VB12, VB21, VB22 181* .. 182* .. External Subroutines .. 183 EXTERNAL CLARTG, SLASV2 184* .. 185* .. Intrinsic Functions .. 186 INTRINSIC ABS, AIMAG, CMPLX, CONJG, REAL 187* .. 188* .. Statement Functions .. 189 REAL ABS1 190* .. 191* .. Statement Function definitions .. 192 ABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) ) 193* .. 194* .. Executable Statements .. 195* 196 IF( UPPER ) THEN 197* 198* Input matrices A and B are upper triangular matrices 199* 200* Form matrix C = A*adj(B) = ( a b ) 201* ( 0 d ) 202* 203 A = A1*B3 204 D = A3*B1 205 B = A2*B1 - A1*B2 206 FB = ABS( B ) 207* 208* Transform complex 2-by-2 matrix C to real matrix by unitary 209* diagonal matrix diag(1,D1). 210* 211 D1 = ONE 212 IF( FB.NE.ZERO ) 213 $ D1 = B / FB 214* 215* The SVD of real 2 by 2 triangular C 216* 217* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) 218* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) 219* 220 CALL SLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL ) 221* 222 IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) ) 223 $ THEN 224* 225* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, 226* and (1,2) element of |U|**H *|A| and |V|**H *|B|. 227* 228 UA11R = CSL*A1 229 UA12 = CSL*A2 + D1*SNL*A3 230* 231 VB11R = CSR*B1 232 VB12 = CSR*B2 + D1*SNR*B3 233* 234 AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 ) 235 AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 ) 236* 237* zero (1,2) elements of U**H *A and V**H *B 238* 239 IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN 240 CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ, 241 $ R ) 242 ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN 243 CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ, 244 $ R ) 245 ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 / 246 $ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN 247 CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ, 248 $ R ) 249 ELSE 250 CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ, 251 $ R ) 252 END IF 253* 254 CSU = CSL 255 SNU = -D1*SNL 256 CSV = CSR 257 SNV = -D1*SNR 258* 259 ELSE 260* 261* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, 262* and (2,2) element of |U|**H *|A| and |V|**H *|B|. 263* 264 UA21 = -CONJG( D1 )*SNL*A1 265 UA22 = -CONJG( D1 )*SNL*A2 + CSL*A3 266* 267 VB21 = -CONJG( D1 )*SNR*B1 268 VB22 = -CONJG( D1 )*SNR*B2 + CSR*B3 269* 270 AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 ) 271 AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 ) 272* 273* zero (2,2) elements of U**H *A and V**H *B, and then swap. 274* 275 IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN 276 CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R ) 277 ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN 278 CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R ) 279 ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 / 280 $ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN 281 CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R ) 282 ELSE 283 CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R ) 284 END IF 285* 286 CSU = SNL 287 SNU = D1*CSL 288 CSV = SNR 289 SNV = D1*CSR 290* 291 END IF 292* 293 ELSE 294* 295* Input matrices A and B are lower triangular matrices 296* 297* Form matrix C = A*adj(B) = ( a 0 ) 298* ( c d ) 299* 300 A = A1*B3 301 D = A3*B1 302 C = A2*B3 - A3*B2 303 FC = ABS( C ) 304* 305* Transform complex 2-by-2 matrix C to real matrix by unitary 306* diagonal matrix diag(d1,1). 307* 308 D1 = ONE 309 IF( FC.NE.ZERO ) 310 $ D1 = C / FC 311* 312* The SVD of real 2 by 2 triangular C 313* 314* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) 315* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) 316* 317 CALL SLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL ) 318* 319 IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) ) 320 $ THEN 321* 322* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, 323* and (2,1) element of |U|**H *|A| and |V|**H *|B|. 324* 325 UA21 = -D1*SNR*A1 + CSR*A2 326 UA22R = CSR*A3 327* 328 VB21 = -D1*SNL*B1 + CSL*B2 329 VB22R = CSL*B3 330* 331 AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 ) 332 AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 ) 333* 334* zero (2,1) elements of U**H *A and V**H *B. 335* 336 IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN 337 CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R ) 338 ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN 339 CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R ) 340 ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 / 341 $ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN 342 CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R ) 343 ELSE 344 CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R ) 345 END IF 346* 347 CSU = CSR 348 SNU = -CONJG( D1 )*SNR 349 CSV = CSL 350 SNV = -CONJG( D1 )*SNL 351* 352 ELSE 353* 354* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, 355* and (1,1) element of |U|**H *|A| and |V|**H *|B|. 356* 357 UA11 = CSR*A1 + CONJG( D1 )*SNR*A2 358 UA12 = CONJG( D1 )*SNR*A3 359* 360 VB11 = CSL*B1 + CONJG( D1 )*SNL*B2 361 VB12 = CONJG( D1 )*SNL*B3 362* 363 AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 ) 364 AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 ) 365* 366* zero (1,1) elements of U**H *A and V**H *B, and then swap. 367* 368 IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN 369 CALL CLARTG( VB12, VB11, CSQ, SNQ, R ) 370 ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN 371 CALL CLARTG( UA12, UA11, CSQ, SNQ, R ) 372 ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 / 373 $ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN 374 CALL CLARTG( UA12, UA11, CSQ, SNQ, R ) 375 ELSE 376 CALL CLARTG( VB12, VB11, CSQ, SNQ, R ) 377 END IF 378* 379 CSU = SNR 380 SNU = CONJG( D1 )*CSR 381 CSV = SNL 382 SNV = CONJG( D1 )*CSL 383* 384 END IF 385* 386 END IF 387* 388 RETURN 389* 390* End of CLAGS2 391* 392 END 393