1*> \brief \b DLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DLASD0 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd0.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd0.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd0.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, 22* WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE 26* .. 27* .. Array Arguments .. 28* INTEGER IWORK( * ) 29* DOUBLE PRECISION D( * ), E( * ), U( LDU, * ), VT( LDVT, * ), 30* $ WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> Using a divide and conquer approach, DLASD0 computes the singular 40*> value decomposition (SVD) of a real upper bidiagonal N-by-M 41*> matrix B with diagonal D and offdiagonal E, where M = N + SQRE. 42*> The algorithm computes orthogonal matrices U and VT such that 43*> B = U * S * VT. The singular values S are overwritten on D. 44*> 45*> A related subroutine, DLASDA, computes only the singular values, 46*> and optionally, the singular vectors in compact form. 47*> \endverbatim 48* 49* Arguments: 50* ========== 51* 52*> \param[in] N 53*> \verbatim 54*> N is INTEGER 55*> On entry, the row dimension of the upper bidiagonal matrix. 56*> This is also the dimension of the main diagonal array D. 57*> \endverbatim 58*> 59*> \param[in] SQRE 60*> \verbatim 61*> SQRE is INTEGER 62*> Specifies the column dimension of the bidiagonal matrix. 63*> = 0: The bidiagonal matrix has column dimension M = N; 64*> = 1: The bidiagonal matrix has column dimension M = N+1; 65*> \endverbatim 66*> 67*> \param[in,out] D 68*> \verbatim 69*> D is DOUBLE PRECISION array, dimension (N) 70*> On entry D contains the main diagonal of the bidiagonal 71*> matrix. 72*> On exit D, if INFO = 0, contains its singular values. 73*> \endverbatim 74*> 75*> \param[in,out] E 76*> \verbatim 77*> E is DOUBLE PRECISION array, dimension (M-1) 78*> Contains the subdiagonal entries of the bidiagonal matrix. 79*> On exit, E has been destroyed. 80*> \endverbatim 81*> 82*> \param[out] U 83*> \verbatim 84*> U is DOUBLE PRECISION array, dimension (LDU, N) 85*> On exit, U contains the left singular vectors. 86*> \endverbatim 87*> 88*> \param[in] LDU 89*> \verbatim 90*> LDU is INTEGER 91*> On entry, leading dimension of U. 92*> \endverbatim 93*> 94*> \param[out] VT 95*> \verbatim 96*> VT is DOUBLE PRECISION array, dimension (LDVT, M) 97*> On exit, VT**T contains the right singular vectors. 98*> \endverbatim 99*> 100*> \param[in] LDVT 101*> \verbatim 102*> LDVT is INTEGER 103*> On entry, leading dimension of VT. 104*> \endverbatim 105*> 106*> \param[in] SMLSIZ 107*> \verbatim 108*> SMLSIZ is INTEGER 109*> On entry, maximum size of the subproblems at the 110*> bottom of the computation tree. 111*> \endverbatim 112*> 113*> \param[out] IWORK 114*> \verbatim 115*> IWORK is INTEGER array, dimension (8*N) 116*> \endverbatim 117*> 118*> \param[out] WORK 119*> \verbatim 120*> WORK is DOUBLE PRECISION array, dimension (3*M**2+2*M) 121*> \endverbatim 122*> 123*> \param[out] INFO 124*> \verbatim 125*> INFO is INTEGER 126*> = 0: successful exit. 127*> < 0: if INFO = -i, the i-th argument had an illegal value. 128*> > 0: if INFO = 1, a singular value did not converge 129*> \endverbatim 130* 131* Authors: 132* ======== 133* 134*> \author Univ. of Tennessee 135*> \author Univ. of California Berkeley 136*> \author Univ. of Colorado Denver 137*> \author NAG Ltd. 138* 139*> \ingroup OTHERauxiliary 140* 141*> \par Contributors: 142* ================== 143*> 144*> Ming Gu and Huan Ren, Computer Science Division, University of 145*> California at Berkeley, USA 146*> 147* ===================================================================== 148 SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, 149 $ WORK, INFO ) 150* 151* -- LAPACK auxiliary routine -- 152* -- LAPACK is a software package provided by Univ. of Tennessee, -- 153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 154* 155* .. Scalar Arguments .. 156 INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE 157* .. 158* .. Array Arguments .. 159 INTEGER IWORK( * ) 160 DOUBLE PRECISION D( * ), E( * ), U( LDU, * ), VT( LDVT, * ), 161 $ WORK( * ) 162* .. 163* 164* ===================================================================== 165* 166* .. Local Scalars .. 167 INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK, 168 $ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR, 169 $ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI 170 DOUBLE PRECISION ALPHA, BETA 171* .. 172* .. External Subroutines .. 173 EXTERNAL DLASD1, DLASDQ, DLASDT, XERBLA 174* .. 175* .. Executable Statements .. 176* 177* Test the input parameters. 178* 179 INFO = 0 180* 181 IF( N.LT.0 ) THEN 182 INFO = -1 183 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN 184 INFO = -2 185 END IF 186* 187 M = N + SQRE 188* 189 IF( LDU.LT.N ) THEN 190 INFO = -6 191 ELSE IF( LDVT.LT.M ) THEN 192 INFO = -8 193 ELSE IF( SMLSIZ.LT.3 ) THEN 194 INFO = -9 195 END IF 196 IF( INFO.NE.0 ) THEN 197 CALL XERBLA( 'DLASD0', -INFO ) 198 RETURN 199 END IF 200* 201* If the input matrix is too small, call DLASDQ to find the SVD. 202* 203 IF( N.LE.SMLSIZ ) THEN 204 CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U, 205 $ LDU, WORK, INFO ) 206 RETURN 207 END IF 208* 209* Set up the computation tree. 210* 211 INODE = 1 212 NDIML = INODE + N 213 NDIMR = NDIML + N 214 IDXQ = NDIMR + N 215 IWK = IDXQ + N 216 CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), 217 $ IWORK( NDIMR ), SMLSIZ ) 218* 219* For the nodes on bottom level of the tree, solve 220* their subproblems by DLASDQ. 221* 222 NDB1 = ( ND+1 ) / 2 223 NCC = 0 224 DO 30 I = NDB1, ND 225* 226* IC : center row of each node 227* NL : number of rows of left subproblem 228* NR : number of rows of right subproblem 229* NLF: starting row of the left subproblem 230* NRF: starting row of the right subproblem 231* 232 I1 = I - 1 233 IC = IWORK( INODE+I1 ) 234 NL = IWORK( NDIML+I1 ) 235 NLP1 = NL + 1 236 NR = IWORK( NDIMR+I1 ) 237 NRP1 = NR + 1 238 NLF = IC - NL 239 NRF = IC + 1 240 SQREI = 1 241 CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ), 242 $ VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU, 243 $ U( NLF, NLF ), LDU, WORK, INFO ) 244 IF( INFO.NE.0 ) THEN 245 RETURN 246 END IF 247 ITEMP = IDXQ + NLF - 2 248 DO 10 J = 1, NL 249 IWORK( ITEMP+J ) = J 250 10 CONTINUE 251 IF( I.EQ.ND ) THEN 252 SQREI = SQRE 253 ELSE 254 SQREI = 1 255 END IF 256 NRP1 = NR + SQREI 257 CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ), 258 $ VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU, 259 $ U( NRF, NRF ), LDU, WORK, INFO ) 260 IF( INFO.NE.0 ) THEN 261 RETURN 262 END IF 263 ITEMP = IDXQ + IC 264 DO 20 J = 1, NR 265 IWORK( ITEMP+J-1 ) = J 266 20 CONTINUE 267 30 CONTINUE 268* 269* Now conquer each subproblem bottom-up. 270* 271 DO 50 LVL = NLVL, 1, -1 272* 273* Find the first node LF and last node LL on the 274* current level LVL. 275* 276 IF( LVL.EQ.1 ) THEN 277 LF = 1 278 LL = 1 279 ELSE 280 LF = 2**( LVL-1 ) 281 LL = 2*LF - 1 282 END IF 283 DO 40 I = LF, LL 284 IM1 = I - 1 285 IC = IWORK( INODE+IM1 ) 286 NL = IWORK( NDIML+IM1 ) 287 NR = IWORK( NDIMR+IM1 ) 288 NLF = IC - NL 289 IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN 290 SQREI = SQRE 291 ELSE 292 SQREI = 1 293 END IF 294 IDXQC = IDXQ + NLF - 1 295 ALPHA = D( IC ) 296 BETA = E( IC ) 297 CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA, 298 $ U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT, 299 $ IWORK( IDXQC ), IWORK( IWK ), WORK, INFO ) 300* 301* Report the possible convergence failure. 302* 303 IF( INFO.NE.0 ) THEN 304 RETURN 305 END IF 306 40 CONTINUE 307 50 CONTINUE 308* 309 RETURN 310* 311* End of DLASD0 312* 313 END 314