1*> \brief \b SORBDB3 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SORBDB3 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb3.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb3.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb3.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, 22* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 26* .. 27* .. Array Arguments .. 28* REAL PHI(*), THETA(*) 29* REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), 30* $ X11(LDX11,*), X21(LDX21,*) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*>\verbatim 38*> 39*> SORBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny 40*> matrix X with orthonomal columns: 41*> 42*> [ B11 ] 43*> [ X11 ] [ P1 | ] [ 0 ] 44*> [-----] = [---------] [-----] Q1**T . 45*> [ X21 ] [ | P2 ] [ B21 ] 46*> [ 0 ] 47*> 48*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P, 49*> Q, or M-Q. Routines SORBDB1, SORBDB2, and SORBDB4 handle cases in 50*> which M-P is not the minimum dimension. 51*> 52*> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), 53*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by 54*> Householder vectors. 55*> 56*> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented 57*> implicitly by angles THETA, PHI. 58*> 59*>\endverbatim 60* 61* Arguments: 62* ========== 63* 64*> \param[in] M 65*> \verbatim 66*> M is INTEGER 67*> The number of rows X11 plus the number of rows in X21. 68*> \endverbatim 69*> 70*> \param[in] P 71*> \verbatim 72*> P is INTEGER 73*> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q). 74*> \endverbatim 75*> 76*> \param[in] Q 77*> \verbatim 78*> Q is INTEGER 79*> The number of columns in X11 and X21. 0 <= Q <= M. 80*> \endverbatim 81*> 82*> \param[in,out] X11 83*> \verbatim 84*> X11 is REAL array, dimension (LDX11,Q) 85*> On entry, the top block of the matrix X to be reduced. On 86*> exit, the columns of tril(X11) specify reflectors for P1 and 87*> the rows of triu(X11,1) specify reflectors for Q1. 88*> \endverbatim 89*> 90*> \param[in] LDX11 91*> \verbatim 92*> LDX11 is INTEGER 93*> The leading dimension of X11. LDX11 >= P. 94*> \endverbatim 95*> 96*> \param[in,out] X21 97*> \verbatim 98*> X21 is REAL array, dimension (LDX21,Q) 99*> On entry, the bottom block of the matrix X to be reduced. On 100*> exit, the columns of tril(X21) specify reflectors for P2. 101*> \endverbatim 102*> 103*> \param[in] LDX21 104*> \verbatim 105*> LDX21 is INTEGER 106*> The leading dimension of X21. LDX21 >= M-P. 107*> \endverbatim 108*> 109*> \param[out] THETA 110*> \verbatim 111*> THETA is REAL array, dimension (Q) 112*> The entries of the bidiagonal blocks B11, B21 are defined by 113*> THETA and PHI. See Further Details. 114*> \endverbatim 115*> 116*> \param[out] PHI 117*> \verbatim 118*> PHI is REAL array, dimension (Q-1) 119*> The entries of the bidiagonal blocks B11, B21 are defined by 120*> THETA and PHI. See Further Details. 121*> \endverbatim 122*> 123*> \param[out] TAUP1 124*> \verbatim 125*> TAUP1 is REAL array, dimension (P) 126*> The scalar factors of the elementary reflectors that define 127*> P1. 128*> \endverbatim 129*> 130*> \param[out] TAUP2 131*> \verbatim 132*> TAUP2 is REAL array, dimension (M-P) 133*> The scalar factors of the elementary reflectors that define 134*> P2. 135*> \endverbatim 136*> 137*> \param[out] TAUQ1 138*> \verbatim 139*> TAUQ1 is REAL array, dimension (Q) 140*> The scalar factors of the elementary reflectors that define 141*> Q1. 142*> \endverbatim 143*> 144*> \param[out] WORK 145*> \verbatim 146*> WORK is REAL array, dimension (LWORK) 147*> \endverbatim 148*> 149*> \param[in] LWORK 150*> \verbatim 151*> LWORK is INTEGER 152*> The dimension of the array WORK. LWORK >= M-Q. 153*> 154*> If LWORK = -1, then a workspace query is assumed; the routine 155*> only calculates the optimal size of the WORK array, returns 156*> this value as the first entry of the WORK array, and no error 157*> message related to LWORK is issued by XERBLA. 158*> \endverbatim 159*> 160*> \param[out] INFO 161*> \verbatim 162*> INFO is INTEGER 163*> = 0: successful exit. 164*> < 0: if INFO = -i, the i-th argument had an illegal value. 165*> \endverbatim 166*> 167* 168* Authors: 169* ======== 170* 171*> \author Univ. of Tennessee 172*> \author Univ. of California Berkeley 173*> \author Univ. of Colorado Denver 174*> \author NAG Ltd. 175* 176*> \ingroup realOTHERcomputational 177* 178*> \par Further Details: 179* ===================== 180*> 181*> \verbatim 182*> 183*> The upper-bidiagonal blocks B11, B21 are represented implicitly by 184*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry 185*> in each bidiagonal band is a product of a sine or cosine of a THETA 186*> with a sine or cosine of a PHI. See [1] or SORCSD for details. 187*> 188*> P1, P2, and Q1 are represented as products of elementary reflectors. 189*> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR 190*> and SORGLQ. 191*> \endverbatim 192* 193*> \par References: 194* ================ 195*> 196*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. 197*> Algorithms, 50(1):33-65, 2009. 198*> 199* ===================================================================== 200 SUBROUTINE SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, 201 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO ) 202* 203* -- LAPACK computational routine -- 204* -- LAPACK is a software package provided by Univ. of Tennessee, -- 205* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 206* 207* .. Scalar Arguments .. 208 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 209* .. 210* .. Array Arguments .. 211 REAL PHI(*), THETA(*) 212 REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), 213 $ X11(LDX11,*), X21(LDX21,*) 214* .. 215* 216* ==================================================================== 217* 218* .. Parameters .. 219 REAL ONE 220 PARAMETER ( ONE = 1.0E0 ) 221* .. 222* .. Local Scalars .. 223 REAL C, S 224 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5, 225 $ LWORKMIN, LWORKOPT 226 LOGICAL LQUERY 227* .. 228* .. External Subroutines .. 229 EXTERNAL SLARF, SLARFGP, SORBDB5, SROT, XERBLA 230* .. 231* .. External Functions .. 232 REAL SNRM2 233 EXTERNAL SNRM2 234* .. 235* .. Intrinsic Function .. 236 INTRINSIC ATAN2, COS, MAX, SIN, SQRT 237* .. 238* .. Executable Statements .. 239* 240* Test input arguments 241* 242 INFO = 0 243 LQUERY = LWORK .EQ. -1 244* 245 IF( M .LT. 0 ) THEN 246 INFO = -1 247 ELSE IF( 2*P .LT. M .OR. P .GT. M ) THEN 248 INFO = -2 249 ELSE IF( Q .LT. M-P .OR. M-Q .LT. M-P ) THEN 250 INFO = -3 251 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN 252 INFO = -5 253 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN 254 INFO = -7 255 END IF 256* 257* Compute workspace 258* 259 IF( INFO .EQ. 0 ) THEN 260 ILARF = 2 261 LLARF = MAX( P, M-P-1, Q-1 ) 262 IORBDB5 = 2 263 LORBDB5 = Q-1 264 LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 ) 265 LWORKMIN = LWORKOPT 266 WORK(1) = LWORKOPT 267 IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN 268 INFO = -14 269 END IF 270 END IF 271 IF( INFO .NE. 0 ) THEN 272 CALL XERBLA( 'SORBDB3', -INFO ) 273 RETURN 274 ELSE IF( LQUERY ) THEN 275 RETURN 276 END IF 277* 278* Reduce rows 1, ..., M-P of X11 and X21 279* 280 DO I = 1, M-P 281* 282 IF( I .GT. 1 ) THEN 283 CALL SROT( Q-I+1, X11(I-1,I), LDX11, X21(I,I), LDX11, C, S ) 284 END IF 285* 286 CALL SLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) ) 287 S = X21(I,I) 288 X21(I,I) = ONE 289 CALL SLARF( 'R', P-I+1, Q-I+1, X21(I,I), LDX21, TAUQ1(I), 290 $ X11(I,I), LDX11, WORK(ILARF) ) 291 CALL SLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I), 292 $ X21(I+1,I), LDX21, WORK(ILARF) ) 293 C = SQRT( SNRM2( P-I+1, X11(I,I), 1 )**2 294 $ + SNRM2( M-P-I, X21(I+1,I), 1 )**2 ) 295 THETA(I) = ATAN2( S, C ) 296* 297 CALL SORBDB5( P-I+1, M-P-I, Q-I, X11(I,I), 1, X21(I+1,I), 1, 298 $ X11(I,I+1), LDX11, X21(I+1,I+1), LDX21, 299 $ WORK(IORBDB5), LORBDB5, CHILDINFO ) 300 CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) ) 301 IF( I .LT. M-P ) THEN 302 CALL SLARFGP( M-P-I, X21(I+1,I), X21(I+2,I), 1, TAUP2(I) ) 303 PHI(I) = ATAN2( X21(I+1,I), X11(I,I) ) 304 C = COS( PHI(I) ) 305 S = SIN( PHI(I) ) 306 X21(I+1,I) = ONE 307 CALL SLARF( 'L', M-P-I, Q-I, X21(I+1,I), 1, TAUP2(I), 308 $ X21(I+1,I+1), LDX21, WORK(ILARF) ) 309 END IF 310 X11(I,I) = ONE 311 CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1), 312 $ LDX11, WORK(ILARF) ) 313* 314 END DO 315* 316* Reduce the bottom-right portion of X11 to the identity matrix 317* 318 DO I = M-P + 1, Q 319 CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) ) 320 X11(I,I) = ONE 321 CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1), 322 $ LDX11, WORK(ILARF) ) 323 END DO 324* 325 RETURN 326* 327* End of SORBDB3 328* 329 END 330 331