1*> \brief \b ZHBGVD 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZHBGVD + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgvd.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgvd.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgvd.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, 22* Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, 23* LIWORK, INFO ) 24* 25* .. Scalar Arguments .. 26* CHARACTER JOBZ, UPLO 27* INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK, 28* $ LWORK, N 29* .. 30* .. Array Arguments .. 31* INTEGER IWORK( * ) 32* DOUBLE PRECISION RWORK( * ), W( * ) 33* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), 34* $ Z( LDZ, * ) 35* .. 36* 37* 38*> \par Purpose: 39* ============= 40*> 41*> \verbatim 42*> 43*> ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors 44*> of a complex generalized Hermitian-definite banded eigenproblem, of 45*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian 46*> and banded, and B is also positive definite. If eigenvectors are 47*> desired, it uses a divide and conquer algorithm. 48*> 49*> The divide and conquer algorithm makes very mild assumptions about 50*> floating point arithmetic. It will work on machines with a guard 51*> digit in add/subtract, or on those binary machines without guard 52*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or 53*> Cray-2. It could conceivably fail on hexadecimal or decimal machines 54*> without guard digits, but we know of none. 55*> \endverbatim 56* 57* Arguments: 58* ========== 59* 60*> \param[in] JOBZ 61*> \verbatim 62*> JOBZ is CHARACTER*1 63*> = 'N': Compute eigenvalues only; 64*> = 'V': Compute eigenvalues and eigenvectors. 65*> \endverbatim 66*> 67*> \param[in] UPLO 68*> \verbatim 69*> UPLO is CHARACTER*1 70*> = 'U': Upper triangles of A and B are stored; 71*> = 'L': Lower triangles of A and B are stored. 72*> \endverbatim 73*> 74*> \param[in] N 75*> \verbatim 76*> N is INTEGER 77*> The order of the matrices A and B. N >= 0. 78*> \endverbatim 79*> 80*> \param[in] KA 81*> \verbatim 82*> KA is INTEGER 83*> The number of superdiagonals of the matrix A if UPLO = 'U', 84*> or the number of subdiagonals if UPLO = 'L'. KA >= 0. 85*> \endverbatim 86*> 87*> \param[in] KB 88*> \verbatim 89*> KB is INTEGER 90*> The number of superdiagonals of the matrix B if UPLO = 'U', 91*> or the number of subdiagonals if UPLO = 'L'. KB >= 0. 92*> \endverbatim 93*> 94*> \param[in,out] AB 95*> \verbatim 96*> AB is COMPLEX*16 array, dimension (LDAB, N) 97*> On entry, the upper or lower triangle of the Hermitian band 98*> matrix A, stored in the first ka+1 rows of the array. The 99*> j-th column of A is stored in the j-th column of the array AB 100*> as follows: 101*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; 102*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). 103*> 104*> On exit, the contents of AB are destroyed. 105*> \endverbatim 106*> 107*> \param[in] LDAB 108*> \verbatim 109*> LDAB is INTEGER 110*> The leading dimension of the array AB. LDAB >= KA+1. 111*> \endverbatim 112*> 113*> \param[in,out] BB 114*> \verbatim 115*> BB is COMPLEX*16 array, dimension (LDBB, N) 116*> On entry, the upper or lower triangle of the Hermitian band 117*> matrix B, stored in the first kb+1 rows of the array. The 118*> j-th column of B is stored in the j-th column of the array BB 119*> as follows: 120*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; 121*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). 122*> 123*> On exit, the factor S from the split Cholesky factorization 124*> B = S**H*S, as returned by ZPBSTF. 125*> \endverbatim 126*> 127*> \param[in] LDBB 128*> \verbatim 129*> LDBB is INTEGER 130*> The leading dimension of the array BB. LDBB >= KB+1. 131*> \endverbatim 132*> 133*> \param[out] W 134*> \verbatim 135*> W is DOUBLE PRECISION array, dimension (N) 136*> If INFO = 0, the eigenvalues in ascending order. 137*> \endverbatim 138*> 139*> \param[out] Z 140*> \verbatim 141*> Z is COMPLEX*16 array, dimension (LDZ, N) 142*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of 143*> eigenvectors, with the i-th column of Z holding the 144*> eigenvector associated with W(i). The eigenvectors are 145*> normalized so that Z**H*B*Z = I. 146*> If JOBZ = 'N', then Z is not referenced. 147*> \endverbatim 148*> 149*> \param[in] LDZ 150*> \verbatim 151*> LDZ is INTEGER 152*> The leading dimension of the array Z. LDZ >= 1, and if 153*> JOBZ = 'V', LDZ >= N. 154*> \endverbatim 155*> 156*> \param[out] WORK 157*> \verbatim 158*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) 159*> On exit, if INFO=0, WORK(1) returns the optimal LWORK. 160*> \endverbatim 161*> 162*> \param[in] LWORK 163*> \verbatim 164*> LWORK is INTEGER 165*> The dimension of the array WORK. 166*> If N <= 1, LWORK >= 1. 167*> If JOBZ = 'N' and N > 1, LWORK >= N. 168*> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. 169*> 170*> If LWORK = -1, then a workspace query is assumed; the routine 171*> only calculates the optimal sizes of the WORK, RWORK and 172*> IWORK arrays, returns these values as the first entries of 173*> the WORK, RWORK and IWORK arrays, and no error message 174*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 175*> \endverbatim 176*> 177*> \param[out] RWORK 178*> \verbatim 179*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) 180*> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. 181*> \endverbatim 182*> 183*> \param[in] LRWORK 184*> \verbatim 185*> LRWORK is INTEGER 186*> The dimension of array RWORK. 187*> If N <= 1, LRWORK >= 1. 188*> If JOBZ = 'N' and N > 1, LRWORK >= N. 189*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. 190*> 191*> If LRWORK = -1, then a workspace query is assumed; the 192*> routine only calculates the optimal sizes of the WORK, RWORK 193*> and IWORK arrays, returns these values as the first entries 194*> of the WORK, RWORK and IWORK arrays, and no error message 195*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 196*> \endverbatim 197*> 198*> \param[out] IWORK 199*> \verbatim 200*> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) 201*> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. 202*> \endverbatim 203*> 204*> \param[in] LIWORK 205*> \verbatim 206*> LIWORK is INTEGER 207*> The dimension of array IWORK. 208*> If JOBZ = 'N' or N <= 1, LIWORK >= 1. 209*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. 210*> 211*> If LIWORK = -1, then a workspace query is assumed; the 212*> routine only calculates the optimal sizes of the WORK, RWORK 213*> and IWORK arrays, returns these values as the first entries 214*> of the WORK, RWORK and IWORK arrays, and no error message 215*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 216*> \endverbatim 217*> 218*> \param[out] INFO 219*> \verbatim 220*> INFO is INTEGER 221*> = 0: successful exit 222*> < 0: if INFO = -i, the i-th argument had an illegal value 223*> > 0: if INFO = i, and i is: 224*> <= N: the algorithm failed to converge: 225*> i off-diagonal elements of an intermediate 226*> tridiagonal form did not converge to zero; 227*> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF 228*> returned INFO = i: B is not positive definite. 229*> The factorization of B could not be completed and 230*> no eigenvalues or eigenvectors were computed. 231*> \endverbatim 232* 233* Authors: 234* ======== 235* 236*> \author Univ. of Tennessee 237*> \author Univ. of California Berkeley 238*> \author Univ. of Colorado Denver 239*> \author NAG Ltd. 240* 241*> \ingroup complex16OTHEReigen 242* 243*> \par Contributors: 244* ================== 245*> 246*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA 247* 248* ===================================================================== 249 SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, 250 $ Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, 251 $ LIWORK, INFO ) 252* 253* -- LAPACK driver routine -- 254* -- LAPACK is a software package provided by Univ. of Tennessee, -- 255* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 256* 257* .. Scalar Arguments .. 258 CHARACTER JOBZ, UPLO 259 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK, 260 $ LWORK, N 261* .. 262* .. Array Arguments .. 263 INTEGER IWORK( * ) 264 DOUBLE PRECISION RWORK( * ), W( * ) 265 COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), 266 $ Z( LDZ, * ) 267* .. 268* 269* ===================================================================== 270* 271* .. Parameters .. 272 COMPLEX*16 CONE, CZERO 273 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), 274 $ CZERO = ( 0.0D+0, 0.0D+0 ) ) 275* .. 276* .. Local Scalars .. 277 LOGICAL LQUERY, UPPER, WANTZ 278 CHARACTER VECT 279 INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK, 280 $ LLWK2, LRWMIN, LWMIN 281* .. 282* .. External Functions .. 283 LOGICAL LSAME 284 EXTERNAL LSAME 285* .. 286* .. External Subroutines .. 287 EXTERNAL DSTERF, XERBLA, ZGEMM, ZHBGST, ZHBTRD, ZLACPY, 288 $ ZPBSTF, ZSTEDC 289* .. 290* .. Executable Statements .. 291* 292* Test the input parameters. 293* 294 WANTZ = LSAME( JOBZ, 'V' ) 295 UPPER = LSAME( UPLO, 'U' ) 296 LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) 297* 298 INFO = 0 299 IF( N.LE.1 ) THEN 300 LWMIN = 1+N 301 LRWMIN = 1+N 302 LIWMIN = 1 303 ELSE IF( WANTZ ) THEN 304 LWMIN = 2*N**2 305 LRWMIN = 1 + 5*N + 2*N**2 306 LIWMIN = 3 + 5*N 307 ELSE 308 LWMIN = N 309 LRWMIN = N 310 LIWMIN = 1 311 END IF 312 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 313 INFO = -1 314 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN 315 INFO = -2 316 ELSE IF( N.LT.0 ) THEN 317 INFO = -3 318 ELSE IF( KA.LT.0 ) THEN 319 INFO = -4 320 ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN 321 INFO = -5 322 ELSE IF( LDAB.LT.KA+1 ) THEN 323 INFO = -7 324 ELSE IF( LDBB.LT.KB+1 ) THEN 325 INFO = -9 326 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN 327 INFO = -12 328 END IF 329* 330 IF( INFO.EQ.0 ) THEN 331 WORK( 1 ) = LWMIN 332 RWORK( 1 ) = LRWMIN 333 IWORK( 1 ) = LIWMIN 334* 335 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN 336 INFO = -14 337 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN 338 INFO = -16 339 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN 340 INFO = -18 341 END IF 342 END IF 343* 344 IF( INFO.NE.0 ) THEN 345 CALL XERBLA( 'ZHBGVD', -INFO ) 346 RETURN 347 ELSE IF( LQUERY ) THEN 348 RETURN 349 END IF 350* 351* Quick return if possible 352* 353 IF( N.EQ.0 ) 354 $ RETURN 355* 356* Form a split Cholesky factorization of B. 357* 358 CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO ) 359 IF( INFO.NE.0 ) THEN 360 INFO = N + INFO 361 RETURN 362 END IF 363* 364* Transform problem to standard eigenvalue problem. 365* 366 INDE = 1 367 INDWRK = INDE + N 368 INDWK2 = 1 + N*N 369 LLWK2 = LWORK - INDWK2 + 2 370 LLRWK = LRWORK - INDWRK + 2 371 CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ, 372 $ WORK, RWORK, IINFO ) 373* 374* Reduce Hermitian band matrix to tridiagonal form. 375* 376 IF( WANTZ ) THEN 377 VECT = 'U' 378 ELSE 379 VECT = 'N' 380 END IF 381 CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z, 382 $ LDZ, WORK, IINFO ) 383* 384* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC. 385* 386 IF( .NOT.WANTZ ) THEN 387 CALL DSTERF( N, W, RWORK( INDE ), INFO ) 388 ELSE 389 CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ), 390 $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK, 391 $ INFO ) 392 CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO, 393 $ WORK( INDWK2 ), N ) 394 CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ ) 395 END IF 396* 397 WORK( 1 ) = LWMIN 398 RWORK( 1 ) = LRWMIN 399 IWORK( 1 ) = LIWMIN 400 RETURN 401* 402* End of ZHBGVD 403* 404 END 405