1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2015 Google Inc. All rights reserved.
3 // http://ceres-solver.org/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: moll.markus@arcor.de (Markus Moll)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 
32 #include "ceres/polynomial.h"
33 
34 #include <algorithm>
35 #include <cmath>
36 #include <cstddef>
37 #include <limits>
38 
39 #include "ceres/function_sample.h"
40 #include "ceres/test_util.h"
41 #include "gtest/gtest.h"
42 
43 namespace ceres {
44 namespace internal {
45 
46 using std::vector;
47 
48 namespace {
49 
50 // For IEEE-754 doubles, machine precision is about 2e-16.
51 const double kEpsilon = 1e-13;
52 const double kEpsilonLoose = 1e-9;
53 
54 // Return the constant polynomial p(x) = 1.23.
ConstantPolynomial(double value)55 Vector ConstantPolynomial(double value) {
56   Vector poly(1);
57   poly(0) = value;
58   return poly;
59 }
60 
61 // Return the polynomial p(x) = poly(x) * (x - root).
AddRealRoot(const Vector & poly,double root)62 Vector AddRealRoot(const Vector& poly, double root) {
63   Vector poly2(poly.size() + 1);
64   poly2.setZero();
65   poly2.head(poly.size()) += poly;
66   poly2.tail(poly.size()) -= root * poly;
67   return poly2;
68 }
69 
70 // Return the polynomial
71 // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
AddComplexRootPair(const Vector & poly,double real,double imag)72 Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
73   Vector poly2(poly.size() + 2);
74   poly2.setZero();
75   // Multiply poly by x^2 - 2real + abs(real,imag)^2
76   poly2.head(poly.size()) += poly;
77   poly2.segment(1, poly.size()) -= 2 * real * poly;
78   poly2.tail(poly.size()) += (real * real + imag * imag) * poly;
79   return poly2;
80 }
81 
82 // Sort the entries in a vector.
83 // Needed because the roots are not returned in sorted order.
SortVector(const Vector & in)84 Vector SortVector(const Vector& in) {
85   Vector out(in);
86   std::sort(out.data(), out.data() + out.size());
87   return out;
88 }
89 
90 // Run a test with the polynomial defined by the N real roots in roots_real.
91 // If use_real is false, NULL is passed as the real argument to
92 // FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
93 // imaginary argument to FindPolynomialRoots.
94 template <int N>
RunPolynomialTestRealRoots(const double (& real_roots)[N],bool use_real,bool use_imaginary,double epsilon)95 void RunPolynomialTestRealRoots(const double (&real_roots)[N],
96                                 bool use_real,
97                                 bool use_imaginary,
98                                 double epsilon) {
99   Vector real;
100   Vector imaginary;
101   Vector poly = ConstantPolynomial(1.23);
102   for (int i = 0; i < N; ++i) {
103     poly = AddRealRoot(poly, real_roots[i]);
104   }
105   Vector* const real_ptr = use_real ? &real : NULL;
106   Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
107   bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
108 
109   EXPECT_EQ(success, true);
110   if (use_real) {
111     EXPECT_EQ(real.size(), N);
112     real = SortVector(real);
113     ExpectArraysClose(N, real.data(), real_roots, epsilon);
114   }
115   if (use_imaginary) {
116     EXPECT_EQ(imaginary.size(), N);
117     const Vector zeros = Vector::Zero(N);
118     ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
119   }
120 }
121 }  // namespace
122 
TEST(Polynomial,InvalidPolynomialOfZeroLengthIsRejected)123 TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
124   // Vector poly(0) is an ambiguous constructor call, so
125   // use the constructor with explicit column count.
126   Vector poly(0, 1);
127   Vector real;
128   Vector imag;
129   bool success = FindPolynomialRoots(poly, &real, &imag);
130 
131   EXPECT_EQ(success, false);
132 }
133 
TEST(Polynomial,ConstantPolynomialReturnsNoRoots)134 TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
135   Vector poly = ConstantPolynomial(1.23);
136   Vector real;
137   Vector imag;
138   bool success = FindPolynomialRoots(poly, &real, &imag);
139 
140   EXPECT_EQ(success, true);
141   EXPECT_EQ(real.size(), 0);
142   EXPECT_EQ(imag.size(), 0);
143 }
144 
TEST(Polynomial,LinearPolynomialWithPositiveRootWorks)145 TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
146   const double roots[1] = {42.42};
147   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
148 }
149 
TEST(Polynomial,LinearPolynomialWithNegativeRootWorks)150 TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
151   const double roots[1] = {-42.42};
152   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
153 }
154 
TEST(Polynomial,QuadraticPolynomialWithPositiveRootsWorks)155 TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {
156   const double roots[2] = {1.0, 42.42};
157   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
158 }
159 
TEST(Polynomial,QuadraticPolynomialWithOneNegativeRootWorks)160 TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {
161   const double roots[2] = {-42.42, 1.0};
162   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
163 }
164 
TEST(Polynomial,QuadraticPolynomialWithTwoNegativeRootsWorks)165 TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {
166   const double roots[2] = {-42.42, -1.0};
167   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
168 }
169 
TEST(Polynomial,QuadraticPolynomialWithCloseRootsWorks)170 TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {
171   const double roots[2] = {42.42, 42.43};
172   RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
173 }
174 
TEST(Polynomial,QuadraticPolynomialWithComplexRootsWorks)175 TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {
176   Vector real;
177   Vector imag;
178 
179   Vector poly = ConstantPolynomial(1.23);
180   poly = AddComplexRootPair(poly, 42.42, 4.2);
181   bool success = FindPolynomialRoots(poly, &real, &imag);
182 
183   EXPECT_EQ(success, true);
184   EXPECT_EQ(real.size(), 2);
185   EXPECT_EQ(imag.size(), 2);
186   ExpectClose(real(0), 42.42, kEpsilon);
187   ExpectClose(real(1), 42.42, kEpsilon);
188   ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
189   ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
190   ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
191 }
192 
TEST(Polynomial,QuarticPolynomialWorks)193 TEST(Polynomial, QuarticPolynomialWorks) {
194   const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
195   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
196 }
197 
TEST(Polynomial,QuarticPolynomialWithTwoClustersOfCloseRootsWorks)198 TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
199   const double roots[4] = {1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5};
200   RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
201 }
202 
TEST(Polynomial,QuarticPolynomialWithTwoZeroRootsWorks)203 TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {
204   const double roots[4] = {-42.42, 0.0, 0.0, 42.42};
205   RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose);
206 }
207 
TEST(Polynomial,QuarticMonomialWorks)208 TEST(Polynomial, QuarticMonomialWorks) {
209   const double roots[4] = {0.0, 0.0, 0.0, 0.0};
210   RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
211 }
212 
TEST(Polynomial,NullPointerAsImaginaryPartWorks)213 TEST(Polynomial, NullPointerAsImaginaryPartWorks) {
214   const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
215   RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
216 }
217 
TEST(Polynomial,NullPointerAsRealPartWorks)218 TEST(Polynomial, NullPointerAsRealPartWorks) {
219   const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
220   RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
221 }
222 
TEST(Polynomial,BothOutputArgumentsNullWorks)223 TEST(Polynomial, BothOutputArgumentsNullWorks) {
224   const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
225   RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
226 }
227 
TEST(Polynomial,DifferentiateConstantPolynomial)228 TEST(Polynomial, DifferentiateConstantPolynomial) {
229   // p(x) = 1;
230   Vector polynomial(1);
231   polynomial(0) = 1.0;
232   const Vector derivative = DifferentiatePolynomial(polynomial);
233   EXPECT_EQ(derivative.rows(), 1);
234   EXPECT_EQ(derivative(0), 0);
235 }
236 
TEST(Polynomial,DifferentiateQuadraticPolynomial)237 TEST(Polynomial, DifferentiateQuadraticPolynomial) {
238   // p(x) = x^2 + 2x + 3;
239   Vector polynomial(3);
240   polynomial(0) = 1.0;
241   polynomial(1) = 2.0;
242   polynomial(2) = 3.0;
243 
244   const Vector derivative = DifferentiatePolynomial(polynomial);
245   EXPECT_EQ(derivative.rows(), 2);
246   EXPECT_EQ(derivative(0), 2.0);
247   EXPECT_EQ(derivative(1), 2.0);
248 }
249 
TEST(Polynomial,MinimizeConstantPolynomial)250 TEST(Polynomial, MinimizeConstantPolynomial) {
251   // p(x) = 1;
252   Vector polynomial(1);
253   polynomial(0) = 1.0;
254 
255   double optimal_x = 0.0;
256   double optimal_value = 0.0;
257   double min_x = 0.0;
258   double max_x = 1.0;
259   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
260 
261   EXPECT_EQ(optimal_value, 1.0);
262   EXPECT_LE(optimal_x, max_x);
263   EXPECT_GE(optimal_x, min_x);
264 }
265 
TEST(Polynomial,MinimizeLinearPolynomial)266 TEST(Polynomial, MinimizeLinearPolynomial) {
267   // p(x) = x - 2
268   Vector polynomial(2);
269 
270   polynomial(0) = 1.0;
271   polynomial(1) = 2.0;
272 
273   double optimal_x = 0.0;
274   double optimal_value = 0.0;
275   double min_x = 0.0;
276   double max_x = 1.0;
277   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
278 
279   EXPECT_EQ(optimal_x, 0.0);
280   EXPECT_EQ(optimal_value, 2.0);
281 }
282 
TEST(Polynomial,MinimizeQuadraticPolynomial)283 TEST(Polynomial, MinimizeQuadraticPolynomial) {
284   // p(x) = x^2 - 3 x + 2
285   // min_x = 3/2
286   // min_value = -1/4;
287   Vector polynomial(3);
288   polynomial(0) = 1.0;
289   polynomial(1) = -3.0;
290   polynomial(2) = 2.0;
291 
292   double optimal_x = 0.0;
293   double optimal_value = 0.0;
294   double min_x = -2.0;
295   double max_x = 2.0;
296   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
297   EXPECT_EQ(optimal_x, 3.0 / 2.0);
298   EXPECT_EQ(optimal_value, -1.0 / 4.0);
299 
300   min_x = -2.0;
301   max_x = 1.0;
302   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
303   EXPECT_EQ(optimal_x, 1.0);
304   EXPECT_EQ(optimal_value, 0.0);
305 
306   min_x = 2.0;
307   max_x = 3.0;
308   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
309   EXPECT_EQ(optimal_x, 2.0);
310   EXPECT_EQ(optimal_value, 0.0);
311 }
312 
TEST(Polymomial,ConstantInterpolatingPolynomial)313 TEST(Polymomial, ConstantInterpolatingPolynomial) {
314   // p(x) = 1.0
315   Vector true_polynomial(1);
316   true_polynomial << 1.0;
317 
318   vector<FunctionSample> samples;
319   FunctionSample sample;
320   sample.x = 1.0;
321   sample.value = 1.0;
322   sample.value_is_valid = true;
323   samples.push_back(sample);
324 
325   const Vector polynomial = FindInterpolatingPolynomial(samples);
326   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
327 }
328 
TEST(Polynomial,LinearInterpolatingPolynomial)329 TEST(Polynomial, LinearInterpolatingPolynomial) {
330   // p(x) = 2x - 1
331   Vector true_polynomial(2);
332   true_polynomial << 2.0, -1.0;
333 
334   vector<FunctionSample> samples;
335   FunctionSample sample;
336   sample.x = 1.0;
337   sample.value = 1.0;
338   sample.value_is_valid = true;
339   sample.gradient = 2.0;
340   sample.gradient_is_valid = true;
341   samples.push_back(sample);
342 
343   const Vector polynomial = FindInterpolatingPolynomial(samples);
344   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
345 }
346 
TEST(Polynomial,QuadraticInterpolatingPolynomial)347 TEST(Polynomial, QuadraticInterpolatingPolynomial) {
348   // p(x) = 2x^2 + 3x + 2
349   Vector true_polynomial(3);
350   true_polynomial << 2.0, 3.0, 2.0;
351 
352   vector<FunctionSample> samples;
353   {
354     FunctionSample sample;
355     sample.x = 1.0;
356     sample.value = 7.0;
357     sample.value_is_valid = true;
358     sample.gradient = 7.0;
359     sample.gradient_is_valid = true;
360     samples.push_back(sample);
361   }
362 
363   {
364     FunctionSample sample;
365     sample.x = -3.0;
366     sample.value = 11.0;
367     sample.value_is_valid = true;
368     samples.push_back(sample);
369   }
370 
371   Vector polynomial = FindInterpolatingPolynomial(samples);
372   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
373 }
374 
TEST(Polynomial,DeficientCubicInterpolatingPolynomial)375 TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {
376   // p(x) = 2x^2 + 3x + 2
377   Vector true_polynomial(4);
378   true_polynomial << 0.0, 2.0, 3.0, 2.0;
379 
380   vector<FunctionSample> samples;
381   {
382     FunctionSample sample;
383     sample.x = 1.0;
384     sample.value = 7.0;
385     sample.value_is_valid = true;
386     sample.gradient = 7.0;
387     sample.gradient_is_valid = true;
388     samples.push_back(sample);
389   }
390 
391   {
392     FunctionSample sample;
393     sample.x = -3.0;
394     sample.value = 11.0;
395     sample.value_is_valid = true;
396     sample.gradient = -9;
397     sample.gradient_is_valid = true;
398     samples.push_back(sample);
399   }
400 
401   const Vector polynomial = FindInterpolatingPolynomial(samples);
402   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
403 }
404 
TEST(Polynomial,CubicInterpolatingPolynomialFromValues)405 TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {
406   // p(x) = x^3 + 2x^2 + 3x + 2
407   Vector true_polynomial(4);
408   true_polynomial << 1.0, 2.0, 3.0, 2.0;
409 
410   vector<FunctionSample> samples;
411   {
412     FunctionSample sample;
413     sample.x = 1.0;
414     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
415     sample.value_is_valid = true;
416     samples.push_back(sample);
417   }
418 
419   {
420     FunctionSample sample;
421     sample.x = -3.0;
422     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
423     sample.value_is_valid = true;
424     samples.push_back(sample);
425   }
426 
427   {
428     FunctionSample sample;
429     sample.x = 2.0;
430     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
431     sample.value_is_valid = true;
432     samples.push_back(sample);
433   }
434 
435   {
436     FunctionSample sample;
437     sample.x = 0.0;
438     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
439     sample.value_is_valid = true;
440     samples.push_back(sample);
441   }
442 
443   const Vector polynomial = FindInterpolatingPolynomial(samples);
444   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
445 }
446 
TEST(Polynomial,CubicInterpolatingPolynomialFromValuesAndOneGradient)447 TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {
448   // p(x) = x^3 + 2x^2 + 3x + 2
449   Vector true_polynomial(4);
450   true_polynomial << 1.0, 2.0, 3.0, 2.0;
451   Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
452 
453   vector<FunctionSample> samples;
454   {
455     FunctionSample sample;
456     sample.x = 1.0;
457     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
458     sample.value_is_valid = true;
459     samples.push_back(sample);
460   }
461 
462   {
463     FunctionSample sample;
464     sample.x = -3.0;
465     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
466     sample.value_is_valid = true;
467     samples.push_back(sample);
468   }
469 
470   {
471     FunctionSample sample;
472     sample.x = 2.0;
473     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
474     sample.value_is_valid = true;
475     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
476     sample.gradient_is_valid = true;
477     samples.push_back(sample);
478   }
479 
480   const Vector polynomial = FindInterpolatingPolynomial(samples);
481   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
482 }
483 
TEST(Polynomial,CubicInterpolatingPolynomialFromValuesAndGradients)484 TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {
485   // p(x) = x^3 + 2x^2 + 3x + 2
486   Vector true_polynomial(4);
487   true_polynomial << 1.0, 2.0, 3.0, 2.0;
488   Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
489 
490   vector<FunctionSample> samples;
491   {
492     FunctionSample sample;
493     sample.x = -3.0;
494     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
495     sample.value_is_valid = true;
496     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
497     sample.gradient_is_valid = true;
498     samples.push_back(sample);
499   }
500 
501   {
502     FunctionSample sample;
503     sample.x = 2.0;
504     sample.value = EvaluatePolynomial(true_polynomial, sample.x);
505     sample.value_is_valid = true;
506     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
507     sample.gradient_is_valid = true;
508     samples.push_back(sample);
509   }
510 
511   const Vector polynomial = FindInterpolatingPolynomial(samples);
512   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
513 }
514 
515 }  // namespace internal
516 }  // namespace ceres
517