1 // print_float().
2
3 // General includes.
4 #include "base/cl_sysdep.h"
5
6 // Specification.
7 #include "cln/float_io.h"
8
9
10 // Implementation.
11
12 // Michael Stoll 10.2.1990 - 26.3.1990
13 // Bruno Haible 8.9.1990 - 10.9.1990
14
15 // Grundgedanken:
16 // Jede Real-Zahl /= 0 repräsentiert ein (offenes) Intervall. Es wird die-
17 // jenige Dezimalzahl mit möglichst wenig Stellen ausgegeben, die in diesem
18 // Intervall liegt.
19 // Um auch große Exponenten zu behandeln, werden Zweier- in Zehnerpotenzen
20 // erst einmal näherungsweise umgerechnet. Nötigenfalls wird die Rechen-
21 // genauigkeit erhöht. Hierbei wird von den Long-Floats beliebiger
22 // Genauigkeit Gebrauch gemacht.
23
24 // Stützt sich auf:
25 // cl_ln2(digits) liefert ln(2) mit mindestens digits Mantissenbits.
26 // cl_ln10(digits) liefert ln(10) mit mindestens digits Mantissenbits.
27 // cl_decimal_string(integer) liefert zu einem Integer >0
28 // einen String mit seiner Dezimaldarstellung.
29 // (substring string start [end]) wie subseq, jedoch für Strings schneller.
30
31 #include <cstring>
32 #include "cln/output.h"
33 #include "base/string/cl_sstring.h"
34 #include "cln/float.h"
35 #include "float/cl_F.h"
36 #include "float/lfloat/cl_LF.h"
37 #include "float/transcendental/cl_F_tran.h"
38 #include "cln/rational.h"
39 #include "cln/integer.h"
40 #include "cln/integer_io.h"
41 #include "integer/cl_I.h"
42
43 namespace cln {
44
45 // Hauptfunktion zur Umwandlung von Floats ins Dezimalsystem:
46 // Zu einem Float x werden ein String as und drei Integers k,e,s
47 // berechnet mit folgenden Eigenschaften:
48 // s = sign(x).
49 // Falls x/=0, betrachte |x| statt x. Also oBdA x>0.
50 // Seien x1 und x2 die nächstkleinere bzw. die nächstgrößere Zahl zu x
51 // vom selben Floating-Point-Format. Die Zahl x repräsentiert somit das
52 // offene Intervall von (x+x1)/2 bis (x+x2)/2.
53 // a ist ein Integer >0, mit genau k Dezimalstellen (k>=1), und es gilt
54 // (x+x1)/2 < a*10^(-k+e) < (x+x2)/2 .
55 // Dabei ist k minimal, also a nicht durch 10 teilbar.
56 // Falls x=0: a=0, k=1, e=0.
57 // as ist die Ziffernfolge von a, der Länge k.
58
59 // typedef
60 struct cl_decimal_decoded_float {
61 char * a;
62 uintC k;
63 cl_I e;
64 cl_I s;
65 // Constructor.
cl_decimal_decoded_floatcln::cl_decimal_decoded_float66 cl_decimal_decoded_float (char * ap, uintC kp, const cl_I& ep, const cl_I& sp) : a(ap), k(kp), e(ep), s(sp) {}
67 };
68
69
decode_float_decimal(const cl_F & x)70 static const cl_decimal_decoded_float decode_float_decimal (const cl_F& x)
71 {
72 var cl_idecoded_float x_idecoded = integer_decode_float(x);
73 var cl_I& binmant = x_idecoded.mantissa;
74 var cl_I& binexpo = x_idecoded.exponent;
75 var cl_I& sign = x_idecoded.sign;
76 if (eq(binmant,0)) // x=0 ?
77 // a=0, k=1, e=0, s=0
78 return cl_decimal_decoded_float(cl_sstring("0",1), 1, 0, 0);
79 // x/=0, also ist sign das Vorzeichen von x und
80 // |x| = 2^binexpo * float(binmant,x) . Ab jetzt oBdA x>0.
81 // Also x = 2^binexpo * float(binmant,x) .
82 var uintC l = integer_length(binmant); // Anzahl der Bits von binmant, >=3
83 var cl_I binmant2 = ash(binmant,1); // 2*binmant
84 var cl_I oben = plus1(binmant2); // obere Intervallgrenze ist
85 // (x+x2)/2 = 2^(binexpo-1) * oben
86 var cl_I unten = minus1(binmant2); // untere Intervallgrenze ist
87 var uintL untenshift = 0; // (x+x1)/2 = 2^(binexpo-1-untenshift) * unten
88 if (integer_length(unten) == l) {
89 // Normalerweise integerlength(unten) = 1+integerlength(binmant).
90 // Hier integerlength(unten) = l = integerlength(binmant),
91 // also war binmant eine Zweierpotenz. In diesem Fall ist die
92 // die Toleranz nach oben 1/2 Einheit, aber die Toleranz nach unten
93 // nur 1/4 Einheit: (x+x1)/2 = 2^(binexpo-2) * (4*binmant-1)
94 unten = minus1(ash(binmant2,1));
95 untenshift = 1;
96 }
97 // Bestimme d (ganz) und a1,a2 (ganz, >0) so, daß
98 // die ganzen a mit (x+x1)/2 < 10^d * a < (x+x2)/2 genau
99 // die ganzen a mit a1 <= a <= a2 sind und 0 <= a2-a1 < 20 gilt.
100 // Wandle dazu 2^e := 2^(binexpo-1) ins Dezimalsystem um.
101 var cl_I e = binexpo - 1;
102 var bool e_gross = (abs(e) > ash(l,1)); // Ist |e| recht groß, >2*l ?
103 var uintC g; // Hilfsvariablen für den Fall, daß |e| groß ist
104 var cl_I f; //
105 var cl_I zehn_d; // Hilfsvariable 10^|d| für den Fall, daß |e| klein ist
106 var cl_I d; // Ergebnisvariablen
107 var cl_I a1; //
108 var cl_I a2; //
109 if (e_gross) { // Ist |e| recht groß ?
110 // Da 2^e nur näherungsweise gehen kann, braucht man Schutzbits.
111 var uintL h = 16; // Anzahl der Schutzbits, muß >= 3 sein
112 neue_schutzbits:
113 // Ziel: 2^e ~= 10^d * f/2^g, wobei 1 <= f/2^g < 10.
114 g = l + h; // Anzahl der gültigen Bits von f
115 // Schätze d = floor(e*lg(2))
116 // mit Hilfe der Näherungsbrüche von lg(2):
117 // (0 1/3 3/10 28/93 59/196 146/485 643/2136 4004/13301
118 // 8651/28738 12655/42039 21306/70777 76573/254370 97879/325147
119 // 1838395/6107016 1936274/6432163 13456039/44699994
120 // 15392313/51132157 44240665/146964308 59632978/198096465
121 // 103873643/345060773 475127550/1578339557 579001193/1923400330
122 // 24793177656/82361153417 149338067129/496090320832
123 // 174131244785/578451474249 845863046269/2809896217828
124 // 1865857337323/6198243909905 6443435058238/21404627947543
125 // )
126 // e>=0 : wähle lg(2) < a/b < lg(2) + 1/e,
127 // dann ist d <= floor(e*a/b) <= d+1 .
128 // e<0 : wähle lg(2) - 1/abs(e) < a/b < lg(2),
129 // dann ist d <= floor(e*a/b) <= d+1 .
130 // Es ist bekannt, dass abs(e) <= 2^31 + 2^32*64, falls intEsize == 32,
131 // bzw. dass abs(e) <= 2^63 + 2^64*64, falls intEsize == 64.
132 // (Hierbei steht 64 für die maximale intDsize und es wurde benutzt,
133 // dass intEsize >= intCsize.)
134 // Unser d sei := floor(e*a/b)-1. (d /= 0, da abs(e) >= 7.)
135 d = minus1(minusp(e)
136 ? (e >= -970
137 ? floor1(e*3,10) // Näherungsbruch 3/10
138 #if (intEsize==32)
139 : floor1(e*97879,325147) // Näherungsbruch 97879/325147
140 #else
141 : (e >= -1800000000LL
142 ? floor1(e*8651,28738) // Näherungsbruch 8651/28738
143 : floor1(e*24793177656LL,82361153417LL) // Näherungsbruch 24793177656/82361153417
144 )
145 #endif
146 )
147 : (e <= 22000
148 ? floor1(e*28,93) // Näherungsbruch 28/93
149 #if (intEsize==32)
150 : floor1(e*1838395,6107016) // Näherungsbruch 1838395/6107016
151 #else
152 : (e <= 3300000000LL
153 ? floor1(e*12655,42039) // Näherungsbruch 12655/42039
154 : floor1(e*149338067129LL,496090320832LL) // Näherungsbruch 149338067129/496090320832
155 )
156 #endif
157 )
158 );
159 // Das wahre d wird durch diese Schätzung entweder getroffen
160 // oder um 1 unterschätzt.
161 // Anders ausgedrückt: 0 < e*log(2)-d*log(10) < 2*log(10).
162 // Nun f/2^g als exp(e*log(2)-d*log(10)) berechnen.
163 // Da f < 100*2^g < 2^(g+7), sind g+7 Bits relative Genauigkeit
164 // des Ergebnisses, also g+7 Bits absolute Genauigkeit von
165 // e*log(2)-d*log(10) nötig. Dazu mit l'=integerlength(e)
166 // für log(2): g+7+l' Bits abs. Gen., g+7+l' Bits rel. Gen.,
167 // für log(10): g+7+l' Bits abs. Gen., g+7+l'+2 Bist rel. Gen.
168 var float_format_t gen = (float_format_t)(g + integer_length(e) + 9); // Genauigkeit
169 var cl_F f2g = exp(The(cl_F)(e * cl_ln2(gen)) - The(cl_F)(d * cl_ln10(gen))); // f/2^g
170 // Das so berechnete f/2^g ist >1, <100.
171 // Mit 2^g multiplizieren und auf eine ganze Zahl runden:
172 f = round1(scale_float(f2g,g)); // liefert f
173 // Eventuell f und d korrigieren:
174 if (f >= ash(10,g)) // f >= 10*2^g ?
175 { f = floor1(f,10); d = d+1; }
176 // Nun ist 2^e ~= 10^d * f/2^g, wobei 1 <= f/2^g < 10 und
177 // f ein Integer ist, der um höchstens 1 vom wahren Wert abweicht:
178 // 10^d * (f-1)/2^g < 2^e < 10^d * (f+1)/2^g
179 // Wir verkleinern nun das offene Intervall
180 // von (x+x1)/2 = 2^(binexpo-1-untenshift) * unten
181 // bis (x+x2)/2 = 2^(binexpo-1) * oben
182 // zu einem abgeschlossenen Intervall
183 // von 10^d * (f+1)/2^(g+untenshift) * unten
184 // bis 10^d * (f-1)/2^g * oben
185 // und suchen darin Zahlen der Form 10^d * a mit ganzem a.
186 // Wegen oben - unten/2^untenshift >= 3/2
187 // und oben + unten/2^untenshift <= 4*binmant+1 < 2^(l+2) <= 2^(g-1)
188 // ist die Intervall-Länge
189 // = 10^d * ((f-1)*oben - (f+1)*unten/2^untenshift) / 2^g
190 // = 10^d * ( f * (oben - unten/2^untenshift)
191 // - (oben + unten/2^untenshift) ) / 2^g
192 // >= 10^d * (2^g * 3/2 - 2^(g-1)) / 2^g
193 // = 10^d * (3/2 - 2^(-1)) = 10^d
194 // und daher gibt es in dem Intervall mindestens eine Zahl
195 // dieser Form.
196 // Die Zahlen der Form 10^d * a in diesem Intervall sind die
197 // mit a1 <= a <= a2, wobei a2 = floor((f-1)*oben/2^g) und
198 // a1 = ceiling((f+1)*unten/2^(g+untenshift))
199 // = floor(((f+1)*unten-1)/2^(g+untenshift))+1 .
200 // Wir haben eben gesehen, daß a1 <= a2 sein muß.
201 a1 = plus1(ash(minus1((f+1)*unten),-(g+untenshift)));
202 a2 = ash((f-1)*oben,-g);
203 // Wir können auch das offene Intervall
204 // von (x+x1)/2 = 2^(binexpo-1-untenshift) * unten
205 // bis (x+x2)/2 = 2^(binexpo-1) * oben
206 // in das (abgeschlossene) Intervall
207 // von 10^d * (f-1)/2^(g+untenshift) * unten
208 // bis 10^d * (f+1)/2^g * oben
209 // einschachteln. Hierin sind die Zahlen der Form 10^d * a
210 // die mit a1' <= a <= a2', wobei a1' <= a1 <= a2 <= a2' ist
211 // und sich a1' und a2' analog zu a1 und a2 berechnen.
212 // Da (f-1)*oben/2^g und (f+1)*oben/2^g sich um 2*oben/2^g
213 // < 2^(l+2-g) < 1 unterscheiden, unterscheiden sich a2 und
214 // a2' um höchstens 1.
215 // Ebenso, wenn 'oben' durch 'unten/2^untenshift' ersetzt
216 // wird: a1' und a1 unterscheiden sich um höchstens 1.
217 // Ist nun a1' < a1 oder a2 < a2' , so ist die Zweierpotenz-
218 // Näherung 10^d * f/2^g für 2^e nicht genau genug gewesen,
219 // und man hat das Ganze mit erhöhtem h zu wiederholen.
220 // Ausnahme (da hilft auch keine höhere Genauigkeit):
221 // Wenn die obere oder untere Intervallgrenze (x+x2)/2 bzw.
222 // (x+x1)/2 selbst die Gestalt 10^d * a mit ganzem a hat.
223 // Dies testet man so:
224 // (x+x2)/2 = 2^e * oben == 10^d * a mit ganzem a, wenn
225 // - für e>=0, (dann 0 <= d <= e): 5^d | oben,
226 // - für e<0, (dann e <= d < 0): 2^(d-e) | oben, was
227 // nur für d-e=0 der Fall ist.
228 // (x+x1)/2 = 2^(e-untenshift) * unten == 10^d * a
229 // mit ganzem a, wenn
230 // - für e>0, (dann 0 <= d < e): 5^d | unten,
231 // - für e<=0, (dann e <= d <= 0): 2^(d-e+untenshift) | unten,
232 // was nur für d-e+untenshift=0 der Fall ist.
233 // Da wir es jedoch mit großem |e| zu tun haben, kann dieser
234 // Ausnahmefall hier gar nicht eintreten!
235 // Denn im Falle e>=0: Aus e>=2*l und l>=11 folgt
236 // e >= (l+2)*ln(10)/ln(5) + ln(10)/ln(2),
237 // d >= e*ln(2)/ln(10)-1 >= (l+2)*ln(2)/ln(5),
238 // 5^d >= 2^(l+2),
239 // und wegen 0 < unten < 2^(l+2) und 0 < oben < 2^(l+1)
240 // sind unten und oben nicht durch 5^d teilbar.
241 // Und im Falle e<=0: Aus -e>=2*l und l>=6 folgt
242 // -e >= (l+2)*ln(10)/ln(5),
243 // d-e >= e*ln(2)/ln(10)-1-e = (1-ln(2)/ln(10))*(-e)-1
244 // = (-e)*ln(5)/ln(10)-1 >= l+1,
245 // 2^(d-e) >= 2^(l+1),
246 // und wegen 0 < unten < 2^(l+1+untenshift) ist unten nicht
247 // durch 2^(d-e+untenshift) teilbar, und wegen
248 // 0 < oben < 2^(l+1) ist oben nicht durch 2^(d-e) teilbar.
249 {
250 var cl_I a1prime = plus1(ash(minus1((f-1)*unten),-(g+untenshift)));
251 if (a1prime < a1)
252 { h = 2*h; goto neue_schutzbits; } // h verdoppeln und alles wiederholen
253 var cl_I a2prime = ash((f+1)*oben,-g);
254 if (a2 < a2prime)
255 { h = 2*h; goto neue_schutzbits; } // h verdoppeln und alles wiederholen
256 }
257 // Jetzt ist a1 der kleinste und a2 der größte Wert, der
258 // für a möglich ist.
259 // Wegen oben - unten/2^untenshift <= 2
260 // ist die obige Intervall-Länge
261 // = 10^d * ((f-1)*oben - (f+1)*unten/2^untenshift) / 2^g
262 // < 10^d * ((f-1)*oben - (f-1)*unten/2^untenshift) / 2^g
263 // = 10^d * (f-1)/2^g * (oben - unten/2^untenshift)
264 // < 10^d * 10 * 2,
265 // also gibt es höchstens 20 mögliche Werte für a.
266 } else {
267 // |e| ist recht klein -> man kann 2^e und 10^d exakt ausrechnen
268 if (!minusp(e)) {
269 // e >= 0. Schätze d = floor(e*lg(2)) wie oben.
270 // Es ist e<=2*l<2^39, falls intCsize == 32,
271 // bzw. e<=2*l<2^71, falls intCsize == 64.
272 d = (e <= 22000
273 ? floor1(e*28,93) // Näherungsbruch 28/93
274 #if (intCsize==32)
275 : floor1(e*1838395,6107016) // Näherungsbruch 1838395/6107016
276 #else
277 : (e <= 3300000000LL
278 ? floor1(e*12655,42039) // Näherungsbruch 12655/42039
279 : floor1(e*149338067129LL,496090320832LL) // Näherungsbruch 149338067129/496090320832
280 )
281 #endif
282 );
283 // Das wahre d wird durch diese Schätzung entweder getroffen
284 // oder um 1 überschätzt, aber das können wir leicht feststellen.
285 zehn_d = The(cl_I)(expt(10,d)); // zehn_d = 10^d
286 if (ash(1,e) < zehn_d) // falls 2^e < 10^d,
287 { d = d-1; zehn_d = exquo(zehn_d,10); } // Schätzung korrigieren
288 // Nun ist 10^d <= 2^e < 10^(d+1) und zehn_d = 10^d.
289 // a1 sei das kleinste ganze a > 2^(e-untenshift) * unten / 10^d,
290 // a2 sei das größte ganze a < 2^e * oben / 10^d.
291 // a1 = 1+floor(unten*2^e/(2^untenshift*10^d)),
292 // a2 = floor((oben*2^e-1)/10^d).
293 a1 = plus1(floor1(ash(unten,e),ash(zehn_d,untenshift)));
294 a2 = floor1(minus1(ash(oben,e)),zehn_d);
295 } else {
296 // e < 0. Schätze d = floor(e*lg(2)) wie oben.
297 // Es ist |e|<=2*l<2^39, falls intCsize == 32,
298 // bzw. |e|<=2*l<2^71, falls intCsize == 64.
299 d = (e >= -970
300 ? floor1(e*3,10) // Näherungsbruch 3/10
301 #if (intCsize==32)
302 : floor1(e*97879,325147) // Näherungsbruch 97879/325147
303 #else
304 : (e >= -1800000000LL
305 ? floor1(e*8651,28738) // Näherungsbruch 8651/28738
306 : floor1(e*24793177656LL,82361153417LL) // Näherungsbruch 24793177656/82361153417
307 )
308 #endif
309 );
310 // Das wahre d wird durch diese Schätzung entweder getroffen
311 // oder um 1 überschätzt, aber das können wir leicht feststellen.
312 zehn_d = The(cl_I)(expt(10,-d)); // zehn_d = 10^(-d)
313 if (integer_length(zehn_d) <= -e) // falls 2^e < 10^d,
314 { d = d-1; zehn_d = zehn_d*10; } // Schätzung korrigieren
315 // Nun ist 10^d <= 2^e < 10^(d+1) und zehn_d = 10^(-d).
316 // a1 sei das kleinste ganze a > 2^(e-untenshift) * unten / 10^d,
317 // a2 sei das größte ganze a < 2^e * oben / 10^d.
318 // a1 = 1+floor(unten*10^(-d)/2^(-e+untenshift)),
319 // a2 = floor((oben*10^(-d)-1)/2^(-e))
320 a1 = plus1(ash(unten*zehn_d,e-untenshift));
321 a2 = ash(minus1(oben*zehn_d),e);
322 }
323 }
324 // Nun sind die ganzen a mit (x+x1)/2 < 10^d * a < (x+x2)/2 genau
325 // die ganzen a mit a1 <= a <= a2. Deren gibt es höchstens 20.
326 // Diese werden in drei Schritten auf einen einzigen reduziert:
327 // 1. Enthält der Bereich eine durch 10 teilbare Zahl a ?
328 // ja -> setze a1:=ceiling(a1/10), a2:=floor(a2/10), d:=d+1.
329 // Danach enthält der Bereich a1 <= a <= a2 höchstens 10
330 // mögliche Werte für a.
331 // 2. Falls jetzt einer der möglichen Werte durch 10 teilbar ist
332 // (es kann nur noch einen solchen geben),
333 // wird er gewählt, die anderen vergessen.
334 // 3. Sonst wird unter allen noch möglichen Werten der zu x
335 // nächstgelegene gewählt.
336 var bool d_shift = false; // Flag, ob im 1. Schritt d incrementiert wurde
337 var cl_I a; // das ausgewählte a
338 // 1.
339 {
340 var cl_I b1 = ceiling1(a1,10);
341 var cl_I b2 = floor1(a2,10);
342 if (b1 <= b2) // noch eine durch 10 teilbare Zahl a ?
343 { a1 = b1; a2 = b2; d = d+1; d_shift = true; }
344 else
345 goto keine_10_mehr;
346 }
347 // 2.
348 a = floor1(a2,10);
349 if (10*a >= a1) {
350 // Noch eine durch 10 teilbare Zahl -> durch 10 teilen.
351 d = d+1; // noch d erhöhen, zehn-d wird nicht mehr gebraucht
352 // Nun a in einen Dezimalstring umwandeln
353 // und dann Nullen am Schluß streichen:
354 var char* as = cl_decimal_string(a); // Ziffernfolge zu a>0
355 var uintC las = ::strlen(as); // Länge der Ziffernfolge
356 var uintC k = las; // Länge ohne die gestrichenen Nullen am Schluß
357 var cl_I ee = k+d; // a * 10^d = a * 10^(-k+ee)
358 while (as[k-1] == '0') // eine 0 am Schluß?
359 { // ja -> a := a / 10 (wird aber nicht mehr gebraucht),
360 // d := d+1 (wird aber nicht mehr gebraucht),
361 k = k-1; as[k] = '\0';
362 }
363 return cl_decimal_decoded_float(as,k,ee,sign);
364 }
365 // 3.
366 keine_10_mehr:
367 if (a1 == a2) {
368 // a1=a2 -> keine Frage der Auswahl mehr:
369 a = a1;
370 } else {
371 // a1<a2 -> zu x nächstgelegenes 10^d * a wählen:
372 if (e_gross) {
373 // a = round(f*2*binmant/2^g/(1oder10)) (beliebige Rundung)
374 // = ceiling(floor(f*2*binmant/(1oder10)/2^(g-1))/2) wählen:
375 var cl_I temp = f * binmant2;
376 if (d_shift) { temp = floor1(temp,10); }
377 a = ash(plus1(ash(temp,1-g)),-1);
378 } else {
379 // |e| klein -> analog wie oben a2 berechnet wurde
380 if (!minusp(e)) {
381 // e>=0: a = round(2^e*2*binmant/10^d)
382 if (d_shift) { zehn_d = 10*zehn_d; }
383 a = round1(ash(binmant2,e),zehn_d);
384 } else {
385 // e<0, also war d<0, jetzt (wegen Schritt 1) d<=0.
386 // a = round(2*binmant*10^(-d)/2^(-e))
387 if (d_shift) { zehn_d = floor1(zehn_d,10); }
388 a = ash(plus1(ash(binmant2*zehn_d,e+1)),-1);
389 }
390 }
391 }
392 var char* as = cl_decimal_string(a); // Ziffernfolge zu a>0
393 var uintC k = ::strlen(as);
394 ASSERT(as[k-1] != '0');
395 return cl_decimal_decoded_float(as,k,k+d,sign);
396 }
397
398 // Ausgabefunktion:
print_float(std::ostream & stream,const cl_print_float_flags & flags,const cl_F & z)399 void print_float (std::ostream& stream, const cl_print_float_flags& flags, const cl_F& z)
400 {
401 var cl_decimal_decoded_float z_decoded = decode_float_decimal(z);
402 var char * & mantstring = z_decoded.a;
403 var uintC& mantlen = z_decoded.k;
404 var cl_I& expo = z_decoded.e;
405 var cl_I& sign = z_decoded.s;
406 // arg in Dezimaldarstellung: +/- 0.mant * 10^expo, wobei
407 // mant die Mantisse: als Simple-String mantstring mit Länge mantlen,
408 // expo der Dezimal-Exponent,
409 // sign das Vorzeichen (-1 oder 0 oder 1).
410 if (eq(sign,-1)) // z < 0 ?
411 fprintchar(stream,'-');
412 var bool flag = (expo >= -2) && (expo <= 7); // z=0 oder 10^-3 <= |z| < 10^7 ?
413 // Was ist auszugeben? Fallunterscheidung:
414 // flag gesetzt -> "fixed-point notation":
415 // expo <= 0 -> Null, Punkt, -expo Nullen, alle Ziffern
416 // 0 < expo < mantlen ->
417 // die ersten expo Ziffern, Punkt, die restlichen Ziffern
418 // expo >= mantlen -> alle Ziffern, expo-mantlen Nullen, Punkt, Null
419 // Nach Möglichkeit kein Exponent// wenn nötig, Exponent 0.
420 // flag gelöscht -> "scientific notation":
421 // erste Ziffer, Punkt, die restlichen Ziffern, bei mantlen=1 eine Null
422 // Exponent.
423 if (flag && !plusp(expo)) {
424 // "fixed-point notation" mit expo <= 0
425 // erst Null und Punkt, dann -expo Nullen, dann alle Ziffern
426 fprintchar(stream,'0');
427 fprintchar(stream,'.');
428 for (uintV i = -FN_to_V(expo); i > 0; i--)
429 fprintchar(stream,'0');
430 fprint(stream,mantstring);
431 expo = 0; // auszugebender Exponent ist 0
432 } else {
433 // "fixed-point notation" mit expo > 0 oder "scientific notation"
434 var uintV scale = (flag ? FN_to_V(expo) : 1);
435 // Der Dezimalpunkt wird um scale Stellen nach rechts geschoben,
436 // d.h. es gibt scale Vorkommastellen. scale > 0.
437 if (scale < mantlen) {
438 // erst scale Ziffern, dann Punkt, dann restliche Ziffern:
439 { for (uintL i = 0; i < scale; i++)
440 fprintchar(stream,mantstring[i]);
441 }
442 fprintchar(stream,'.');
443 { for (uintC i = scale; i < mantlen; i++)
444 fprintchar(stream,mantstring[i]);
445 }
446 } else {
447 // scale>=mantlen -> es bleibt nichts für die Nachkommastellen.
448 // alle Ziffern, dann scale-mantlen Nullen, dann Punkt und Null
449 fprint(stream,mantstring);
450 for (uintV i = mantlen; i < scale; i++)
451 fprintchar(stream,'0');
452 fprintchar(stream,'.');
453 fprintchar(stream,'0');
454 }
455 expo = expo - scale; // der auszugebende Exponent ist um scale kleiner.
456 }
457 // Nun geht's zum Exponenten:
458 var char exp_marker;
459 floattypecase(z
460 , exp_marker = 's';
461 , exp_marker = 'f';
462 , exp_marker = 'd';
463 , exp_marker = 'L';
464 );
465 if (!flags.float_readably) {
466 floatformatcase(flags.default_float_format
467 , if (exp_marker=='s') { exp_marker = 'E'; }
468 , if (exp_marker=='f') { exp_marker = 'E'; }
469 , if (exp_marker=='d') { exp_marker = 'E'; }
470 , if ((exp_marker=='L') && (len == TheLfloat(z)->len)) { exp_marker = 'E'; }
471 );
472 }
473 if (!(flag && (exp_marker=='E'))) { // evtl. Exponent ganz weglassen
474 fprintchar(stream,exp_marker);
475 print_integer(stream,10,expo);
476 }
477 // Fertig. Aufräumen.
478 free_hook(mantstring);
479 }
480
481 } // namespace cln
482