1
2      SUBROUTINE DQK15W(F,W,P1,P2,P3,P4,KP,A,B,RESULT,ABSERR,RESABS,
3     1   RESASC)
4C***BEGIN PROLOGUE  DQK15W
5C***DATE WRITTEN   810101   (YYMMDD)
6C***REVISION DATE  830518   (YYMMDD)
7C***CATEGORY NO.  H2A2A2
8C***KEYWORDS  15-POINT GAUSS-KRONROD RULES
9C***AUTHOR  PIESSENS, ROBERT, APPLIED MATH. AND PROGR. DIV. -
10C             K. U. LEUVEN
11C           DE DONCKER, ELISE, APPLIED MATH. AND PROGR. DIV. -
12C             K. U. LEUVEN
13C***PURPOSE  To compute I = Integral of F*W over (A,B), with error
14C                           estimate
15C                       J = Integral of ABS(F*W) over (A,B)
16C***DESCRIPTION
17C
18C           Integration rules
19C           Standard fortran subroutine
20C           Double precision version
21C
22C           PARAMETERS
23C             ON ENTRY
24C              F      - Double precision
25C                       Function subprogram defining the integrand
26C                       function F(X). The actual name for F needs to be
27C                       declared E X T E R N A L in the driver program.
28C
29C              W      - Double precision
30C                       Function subprogram defining the integrand
31C                       WEIGHT function W(X). The actual name for W
32C                       needs to be declared E X T E R N A L in the
33C                       calling program.
34C
35C              P1, P2, P3, P4 - Double precision
36C                       Parameters in the WEIGHT function
37C
38C              KP     - Integer
39C                       Key for indicating the type of WEIGHT function
40C
41C              A      - Double precision
42C                       Lower limit of integration
43C
44C              B      - Double precision
45C                       Upper limit of integration
46C
47C            ON RETURN
48C              RESULT - Double precision
49C                       Approximation to the integral I
50C                       RESULT is computed by applying the 15-point
51C                       Kronrod rule (RESK) obtained by optimal addition
52C                       of abscissae to the 7-point Gauss rule (RESG).
53C
54C              ABSERR - Double precision
55C                       Estimate of the modulus of the absolute error,
56C                       which should equal or exceed ABS(I-RESULT)
57C
58C              RESABS - Double precision
59C                       Approximation to the integral of ABS(F)
60C
61C              RESASC - Double precision
62C                       Approximation to the integral of ABS(F-I/(B-A))
63C***REFERENCES  (NONE)
64C***ROUTINES CALLED  D1MACH
65C***END PROLOGUE  DQK15W
66
67
68