1 #include <math.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <ctype.h>
5 #include <float.h>
6 #include <string.h>
7 #include <stdarg.h>
8 #include <limits.h>
9 #include <locale.h>
10 #include <assert.h>
11 #include "svm.h"
12 int libsvm_version = LIBSVM_VERSION;
13 typedef float Qfloat;
14 typedef signed char schar;
15 #ifndef min
min(T x,T y)16 template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
17 #endif
18 #ifndef max
max(T x,T y)19 template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
20 #endif
swap(T & x,T & y)21 template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
clone(T * & dst,S * src,int n)22 template <class S, class T> static inline void clone(T*& dst, S* src, int n)
23 {
24   dst = new T[n];
25   memcpy((void *)dst,(void *)src,sizeof(T)*n);
26 }
powi(double base,int times)27 static inline double powi(double base, int times)
28 {
29   double tmp = base, ret = 1.0;
30 
31   for(int t=times; t>0; t/=2)
32   {
33     if(t%2==1) ret*=tmp;
34     tmp = tmp * tmp;
35   }
36   return ret;
37 }
38 #define INF HUGE_VAL
39 #define TAU 1e-12
40 #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
41 
print_string_stdout(const char * s)42 static void print_string_stdout(const char *s)
43 {
44   fputs(s,stdout);
45   fflush(stdout);
46 }
47 static void (*svm_print_string) (const char *) = &print_string_stdout;
48 #if 0
49 static void info(const char *fmt,...)
50 {
51   char buf[BUFSIZ];
52   va_list ap;
53   va_start(ap,fmt);
54   vsprintf(buf,fmt,ap);
55   va_end(ap);
56   (*svm_print_string)(buf);
57 }
58 #else
info(const char * fmt,...)59 static void info(const char *fmt,...) {}
60 #endif
61 
62 //
63 // Kernel Cache
64 //
65 // l is the number of total data items
66 // size is the cache size limit in bytes
67 //
68 class Cache
69 {
70 public:
71   Cache(int l,long int size);
72   ~Cache();
73 
74   // request data [0,len)
75   // return some position p where [p,len) need to be filled
76   // (p >= len if nothing needs to be filled)
77   int get_data(const int index, Qfloat **data, int len);
78   void swap_index(int i, int j);
79 private:
80   int l;
81   long int size;
82   struct head_t
83   {
84     head_t *prev, *next;	// a circular list
85     Qfloat *data;
86     int len;		// data[0,len) is cached in this entry
87   };
88 
89   head_t *head;
90   head_t lru_head;
91   void lru_delete(head_t *h);
92   void lru_insert(head_t *h);
93 };
94 
Cache(int l_,long int size_)95 Cache::Cache(int l_,long int size_):l(l_),size(size_)
96 {
97   head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
98   size /= sizeof(Qfloat);
99   size -= l * sizeof(head_t) / sizeof(Qfloat);
100   size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
101   lru_head.next = lru_head.prev = &lru_head;
102 }
103 
~Cache()104 Cache::~Cache()
105 {
106   for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
107     free(h->data);
108   free(head);
109 }
110 
lru_delete(head_t * h)111 void Cache::lru_delete(head_t *h)
112 {
113   // delete from current location
114   h->prev->next = h->next;
115   h->next->prev = h->prev;
116 }
117 
lru_insert(head_t * h)118 void Cache::lru_insert(head_t *h)
119 {
120   // insert to last position
121   h->next = &lru_head;
122   h->prev = lru_head.prev;
123   h->prev->next = h;
124   h->next->prev = h;
125 }
126 
get_data(const int index,Qfloat ** data,int len)127 int Cache::get_data(const int index, Qfloat **data, int len)
128 {
129   head_t *h = &head[index];
130   if(h->len) lru_delete(h);
131   int more = len - h->len;
132 
133   if(more > 0)
134   {
135     // free old space
136     while(size < more)
137     {
138       head_t *old = lru_head.next;
139       lru_delete(old);
140       free(old->data);
141       size += old->len;
142       old->data = 0;
143       old->len = 0;
144     }
145 
146     // allocate new space
147     h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
148     size -= more;
149     swap(h->len,len);
150   }
151 
152   lru_insert(h);
153   *data = h->data;
154   return len;
155 }
156 
swap_index(int i,int j)157 void Cache::swap_index(int i, int j)
158 {
159   if(i==j) return;
160 
161   if(head[i].len) lru_delete(&head[i]);
162   if(head[j].len) lru_delete(&head[j]);
163   swap(head[i].data,head[j].data);
164   swap(head[i].len,head[j].len);
165   if(head[i].len) lru_insert(&head[i]);
166   if(head[j].len) lru_insert(&head[j]);
167 
168   if(i>j) swap(i,j);
169   for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
170   {
171     if(h->len > i)
172     {
173       if(h->len > j)
174         swap(h->data[i],h->data[j]);
175       else
176       {
177         // give up
178         lru_delete(h);
179         free(h->data);
180         size += h->len;
181         h->data = 0;
182         h->len = 0;
183       }
184     }
185   }
186 }
187 
188 //
189 // Kernel evaluation
190 //
191 // the static method k_function is for doing single kernel evaluation
192 // the constructor of Kernel prepares to calculate the l*l kernel matrix
193 // the member function get_Q is for getting one column from the Q Matrix
194 //
195 class QMatrix {
196 public:
197   virtual Qfloat *get_Q(int column, int len) const = 0;
198   virtual double *get_QD() const = 0;
199   virtual void swap_index(int i, int j) const = 0;
~QMatrix()200   virtual ~QMatrix() {}
201 };
202 
203 class Kernel: public QMatrix {
204 public:
205   Kernel(int l, svm_node * const * x, const svm_parameter& param);
206   virtual ~Kernel();
207 
208   static double k_function(const svm_node *x, const svm_node *y,
209                            const svm_parameter& param);
210 
211   virtual Qfloat *get_Q(int column, int len) const = 0;
212   virtual double *get_QD() const = 0;
swap_index(int i,int j) const213   virtual void swap_index(int i, int j) const	// no so const...
214   {
215     swap(x[i],x[j]);
216     if(x_square) swap(x_square[i],x_square[j]);
217   }
218 protected:
219 
220   double (Kernel::*kernel_function)(int i, int j) const;
221 
222 private:
223   const svm_node **x;
224   double *x_square;
225 
226   // svm_parameter
227   const int kernel_type;
228   const int degree;
229   const double gamma;
230   const double coef0;
231 
232   static double dot(const svm_node *px, const svm_node *py);
kernel_linear(int i,int j) const233   double kernel_linear(int i, int j) const
234   {
235     return dot(x[i],x[j]);
236   }
kernel_poly(int i,int j) const237   double kernel_poly(int i, int j) const
238   {
239     return powi(gamma*dot(x[i],x[j])+coef0,degree);
240   }
kernel_rbf(int i,int j) const241   double kernel_rbf(int i, int j) const
242   {
243     return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
244   }
kernel_sigmoid(int i,int j) const245   double kernel_sigmoid(int i, int j) const
246   {
247     return tanh(gamma*dot(x[i],x[j])+coef0);
248   }
kernel_precomputed(int i,int j) const249   double kernel_precomputed(int i, int j) const
250   {
251     return x[i][(int)(x[j][0].value)].value;
252   }
253 };
254 
255 
k_function(const svm_node * x,const svm_node * y,const svm_parameter & param)256 double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param)
257 {
258   return Kernel::k_function(x, y, param);
259 }
260 
Kernel(int l,svm_node * const * x_,const svm_parameter & param)261 Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
262  :kernel_type(param.kernel_type), degree(param.degree),
263   gamma(param.gamma), coef0(param.coef0)
264 {
265   switch(kernel_type)
266   {
267   case LINEAR:
268     kernel_function = &Kernel::kernel_linear;
269     break;
270   case POLY:
271     kernel_function = &Kernel::kernel_poly;
272     break;
273   case RBF:
274     kernel_function = &Kernel::kernel_rbf;
275     break;
276   case SIGMOID:
277     kernel_function = &Kernel::kernel_sigmoid;
278     break;
279   case PRECOMPUTED:
280     kernel_function = &Kernel::kernel_precomputed;
281     break;
282   }
283 
284   clone(x,x_,l);
285 
286   if(kernel_type == RBF)
287   {
288     x_square = new double[l];
289     for(int i=0;i<l;i++)
290       x_square[i] = dot(x[i],x[i]);
291   }
292   else
293     x_square = 0;
294 }
295 
~Kernel()296 Kernel::~Kernel()
297 {
298   delete[] x;
299   delete[] x_square;
300 }
301 
dot(const svm_node * px,const svm_node * py)302 double Kernel::dot(const svm_node *px, const svm_node *py)
303 {
304   double sum = 0;
305   while(px->index != -1 && py->index != -1)
306   {
307     if(px->index == py->index)
308     {
309       sum += px->value * py->value;
310       ++px;
311       ++py;
312     }
313     else
314     {
315       if(px->index > py->index)
316         ++py;
317       else
318         ++px;
319     }
320   }
321   return sum;
322 }
323 
k_function(const svm_node * x,const svm_node * y,const svm_parameter & param)324 double Kernel::k_function(const svm_node *x, const svm_node *y,
325                           const svm_parameter& param)
326 {
327   switch(param.kernel_type)
328   {
329   case LINEAR:
330     return dot(x,y);
331   case POLY:
332     return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
333   case RBF:
334     {
335       double sum = 0;
336       while(x->index != -1 && y->index !=-1)
337       {
338         if(x->index == y->index)
339         {
340           double d = x->value - y->value;
341           sum += d*d;
342           ++x;
343           ++y;
344         }
345         else
346         {
347           if(x->index > y->index)
348           {
349             sum += y->value * y->value;
350             ++y;
351           }
352           else
353           {
354             sum += x->value * x->value;
355             ++x;
356           }
357         }
358       }
359 
360       while(x->index != -1)
361       {
362         sum += x->value * x->value;
363         ++x;
364       }
365 
366       while(y->index != -1)
367       {
368         sum += y->value * y->value;
369         ++y;
370       }
371 
372       return exp(-param.gamma*sum);
373     }
374   case SIGMOID:
375     return tanh(param.gamma*dot(x,y)+param.coef0);
376   case PRECOMPUTED:  //x: test (validation), y: SV
377     return x[(int)(y->value)].value;
378   default:
379     return 0;  // Unreachable
380   }
381 }
382 
383 // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
384 // Solves:
385 //
386 //	min 0.5(\alpha^T Q \alpha) + p^T \alpha
387 //
388 //		y^T \alpha = \delta
389 //		y_i = +1 or -1
390 //		0 <= alpha_i <= Cp for y_i = 1
391 //		0 <= alpha_i <= Cn for y_i = -1
392 //
393 // Given:
394 //
395 //	Q, p, y, Cp, Cn, and an initial feasible point \alpha
396 //	l is the size of vectors and matrices
397 //	eps is the stopping tolerance
398 //
399 // solution will be put in \alpha, objective value will be put in obj
400 //
401 class Solver {
402 public:
Solver()403   Solver() {};
~Solver()404   virtual ~Solver() {};
405 
406   struct SolutionInfo {
407     double obj;
408     double rho;
409     double *upper_bound;
410     double r;	// for Solver_NU
411   };
412 
413   void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
414              double *alpha_, const double* C_, double eps,
415              SolutionInfo* si, int shrinking);
416 protected:
417   int active_size;
418   schar *y;
419   double *G;		// gradient of objective function
420   enum { LOWER_BOUND, UPPER_BOUND, FREE };
421   char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
422   double *alpha;
423   const QMatrix *Q;
424   const double *QD;
425   double eps;
426   double Cp,Cn;
427   double *C;
428   double *p;
429   int *active_set;
430   double *G_bar;		// gradient, if we treat free variables as 0
431   int l;
432   bool unshrink;	// XXX
433 
get_C(int i)434   double get_C(int i)
435   {
436     return C[i];
437   }
update_alpha_status(int i)438   void update_alpha_status(int i)
439   {
440     if(alpha[i] >= get_C(i))
441       alpha_status[i] = UPPER_BOUND;
442     else if(alpha[i] <= 0)
443       alpha_status[i] = LOWER_BOUND;
444     else alpha_status[i] = FREE;
445   }
is_upper_bound(int i)446   bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
is_lower_bound(int i)447   bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
is_free(int i)448   bool is_free(int i) { return alpha_status[i] == FREE; }
449   void swap_index(int i, int j);
450   void reconstruct_gradient();
451   virtual int select_working_set(int &i, int &j);
452   virtual double calculate_rho();
453   virtual void do_shrinking();
454 private:
455   bool be_shrunk(int i, double Gmax1, double Gmax2);
456 };
457 
swap_index(int i,int j)458 void Solver::swap_index(int i, int j)
459 {
460   Q->swap_index(i,j);
461   swap(y[i],y[j]);
462   swap(G[i],G[j]);
463   swap(alpha_status[i],alpha_status[j]);
464   swap(alpha[i],alpha[j]);
465   swap(p[i],p[j]);
466   swap(active_set[i],active_set[j]);
467   swap(G_bar[i],G_bar[j]);
468   swap(C[i],C[j]);
469 }
470 
reconstruct_gradient()471 void Solver::reconstruct_gradient()
472 {
473   // reconstruct inactive elements of G from G_bar and free variables
474 
475   if(active_size == l) return;
476 
477   int i,j;
478   int nr_free = 0;
479 
480   for(j=active_size;j<l;j++)
481     G[j] = G_bar[j] + p[j];
482 
483   for(j=0;j<active_size;j++)
484     if(is_free(j))
485       nr_free++;
486 
487   if(2*nr_free < active_size)
488     info("\nWARNING: using -h 0 may be faster\n");
489 
490   if (nr_free*l > 2*active_size*(l-active_size))
491   {
492     for(i=active_size;i<l;i++)
493     {
494       const Qfloat *Q_i = Q->get_Q(i,active_size);
495       for(j=0;j<active_size;j++)
496         if(is_free(j))
497           G[i] += alpha[j] * Q_i[j];
498     }
499   }
500   else
501   {
502     for(i=0;i<active_size;i++)
503       if(is_free(i))
504       {
505         const Qfloat *Q_i = Q->get_Q(i,l);
506         double alpha_i = alpha[i];
507         for(j=active_size;j<l;j++)
508           G[j] += alpha_i * Q_i[j];
509       }
510   }
511 }
512 
Solve(int l,const QMatrix & Q,const double * p_,const schar * y_,double * alpha_,const double * C_,double eps,SolutionInfo * si,int shrinking)513 void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
514                    double *alpha_, const double* C_, double eps,
515                    SolutionInfo* si, int shrinking)
516 {
517   this->l = l;
518   this->Q = &Q;
519   QD=Q.get_QD();
520   clone(p, p_,l);
521   clone(y, y_,l);
522   clone(alpha,alpha_,l);
523   clone(C,C_,l);
524   this->eps = eps;
525   unshrink = false;
526 
527   // initialize alpha_status
528   {
529     alpha_status = new char[l];
530     for(int i=0;i<l;i++)
531       update_alpha_status(i);
532   }
533 
534   // initialize active set (for shrinking)
535   {
536     active_set = new int[l];
537     for(int i=0;i<l;i++)
538       active_set[i] = i;
539     active_size = l;
540   }
541 
542   // initialize gradient
543   {
544     G = new double[l];
545     G_bar = new double[l];
546     int i;
547     for(i=0;i<l;i++)
548     {
549       G[i] = p[i];
550       G_bar[i] = 0;
551     }
552     for(i=0;i<l;i++)
553       if(!is_lower_bound(i))
554       {
555         const Qfloat *Q_i = Q.get_Q(i,l);
556         double alpha_i = alpha[i];
557         int j;
558         for(j=0;j<l;j++)
559           G[j] += alpha_i*Q_i[j];
560         if(is_upper_bound(i))
561           for(j=0;j<l;j++)
562             G_bar[j] += get_C(i) * Q_i[j];
563       }
564   }
565 
566   // optimization step
567 
568   int iter = 0;
569   int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
570   int counter = min(l,1000)+1;
571 
572   while(iter < max_iter)
573   {
574     // show progress and do shrinking
575 
576     if(--counter == 0)
577     {
578       counter = min(l,1000);
579       if(shrinking) do_shrinking();
580       info(".");
581     }
582 
583     int i,j;
584     if(select_working_set(i,j)!=0)
585     {
586       // reconstruct the whole gradient
587       reconstruct_gradient();
588       // reset active set size and check
589       active_size = l;
590       info("*");
591       if(select_working_set(i,j)!=0)
592         break;
593       else
594         counter = 1;	// do shrinking next iteration
595     }
596 
597     ++iter;
598 
599     // update alpha[i] and alpha[j], handle bounds carefully
600 
601     const Qfloat *Q_i = Q.get_Q(i,active_size);
602     const Qfloat *Q_j = Q.get_Q(j,active_size);
603 
604     double C_i = get_C(i);
605     double C_j = get_C(j);
606 
607     double old_alpha_i = alpha[i];
608     double old_alpha_j = alpha[j];
609 
610     if(y[i]!=y[j])
611     {
612       double quad_coef = QD[i]+QD[j]+2*Q_i[j];
613       if (quad_coef <= 0)
614         quad_coef = TAU;
615       double delta = (-G[i]-G[j])/quad_coef;
616       double diff = alpha[i] - alpha[j];
617       alpha[i] += delta;
618       alpha[j] += delta;
619 
620       if(diff > 0)
621       {
622         if(alpha[j] < 0)
623         {
624           alpha[j] = 0;
625           alpha[i] = diff;
626         }
627       }
628       else
629       {
630         if(alpha[i] < 0)
631         {
632           alpha[i] = 0;
633           alpha[j] = -diff;
634         }
635       }
636       if(diff > C_i - C_j)
637       {
638         if(alpha[i] > C_i)
639         {
640           alpha[i] = C_i;
641           alpha[j] = C_i - diff;
642         }
643       }
644       else
645       {
646         if(alpha[j] > C_j)
647         {
648           alpha[j] = C_j;
649           alpha[i] = C_j + diff;
650         }
651       }
652     }
653     else
654     {
655       double quad_coef = QD[i]+QD[j]-2*Q_i[j];
656       if (quad_coef <= 0)
657         quad_coef = TAU;
658       double delta = (G[i]-G[j])/quad_coef;
659       double sum = alpha[i] + alpha[j];
660       alpha[i] -= delta;
661       alpha[j] += delta;
662 
663       if(sum > C_i)
664       {
665         if(alpha[i] > C_i)
666         {
667           alpha[i] = C_i;
668           alpha[j] = sum - C_i;
669         }
670       }
671       else
672       {
673         if(alpha[j] < 0)
674         {
675           alpha[j] = 0;
676           alpha[i] = sum;
677         }
678       }
679       if(sum > C_j)
680       {
681         if(alpha[j] > C_j)
682         {
683           alpha[j] = C_j;
684           alpha[i] = sum - C_j;
685         }
686       }
687       else
688       {
689         if(alpha[i] < 0)
690         {
691           alpha[i] = 0;
692           alpha[j] = sum;
693         }
694       }
695     }
696 
697     // update G
698 
699     double delta_alpha_i = alpha[i] - old_alpha_i;
700     double delta_alpha_j = alpha[j] - old_alpha_j;
701 
702     for(int k=0;k<active_size;k++)
703     {
704       G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
705     }
706 
707     // update alpha_status and G_bar
708 
709     {
710       bool ui = is_upper_bound(i);
711       bool uj = is_upper_bound(j);
712       update_alpha_status(i);
713       update_alpha_status(j);
714       int k;
715       if(ui != is_upper_bound(i))
716       {
717         Q_i = Q.get_Q(i,l);
718         if(ui)
719           for(k=0;k<l;k++)
720             G_bar[k] -= C_i * Q_i[k];
721         else
722           for(k=0;k<l;k++)
723             G_bar[k] += C_i * Q_i[k];
724       }
725 
726       if(uj != is_upper_bound(j))
727       {
728         Q_j = Q.get_Q(j,l);
729         if(uj)
730           for(k=0;k<l;k++)
731             G_bar[k] -= C_j * Q_j[k];
732         else
733           for(k=0;k<l;k++)
734             G_bar[k] += C_j * Q_j[k];
735       }
736     }
737   }
738 
739   if(iter >= max_iter)
740   {
741     if(active_size < l)
742     {
743       // reconstruct the whole gradient to calculate objective value
744       reconstruct_gradient();
745       active_size = l;
746       info("*");
747     }
748     fprintf(stderr,"\nWARNING: reaching max number of iterations\n");
749   }
750 
751   // calculate rho
752 
753   si->rho = calculate_rho();
754 
755   // calculate objective value
756   {
757     double v = 0;
758     int i;
759     for(i=0;i<l;i++)
760       v += alpha[i] * (G[i] + p[i]);
761 
762     si->obj = v/2;
763   }
764 
765   // put back the solution
766   {
767     for(int i=0;i<l;i++)
768       alpha_[active_set[i]] = alpha[i];
769   }
770 
771   // juggle everything back
772   /*{
773     for(int i=0;i<l;i++)
774     while(active_set[i] != i)
775     swap_index(i,active_set[i]);
776     // or Q.swap_index(i,active_set[i]);
777 	}*/
778 
779   for(int i=0;i<l;i++)
780     si->upper_bound[i] = C[i];
781 
782   info("\noptimization finished, #iter = %d\n",iter);
783 
784   delete[] p;
785   delete[] y;
786   delete[] C;
787   delete[] alpha;
788   delete[] alpha_status;
789   delete[] active_set;
790   delete[] G;
791   delete[] G_bar;
792 }
793 
794 // return 1 if already optimal, return 0 otherwise
select_working_set(int & out_i,int & out_j)795 int Solver::select_working_set(int &out_i, int &out_j)
796 {
797   // return i,j such that
798   // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
799   // j: minimizes the decrease of obj value
800   //    (if quadratic coefficeint <= 0, replace it with tau)
801   //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
802 
803   double Gmax = -INF;
804   double Gmax2 = -INF;
805   int Gmax_idx = -1;
806   int Gmin_idx = -1;
807   double obj_diff_min = INF;
808 
809   for(int t=0;t<active_size;t++)
810     if(y[t]==+1)
811     {
812       if(!is_upper_bound(t))
813         if(-G[t] >= Gmax)
814         {
815           Gmax = -G[t];
816           Gmax_idx = t;
817         }
818     }
819     else
820     {
821       if(!is_lower_bound(t))
822         if(G[t] >= Gmax)
823         {
824           Gmax = G[t];
825           Gmax_idx = t;
826         }
827     }
828 
829   int i = Gmax_idx;
830   const Qfloat *Q_i = NULL;
831   if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
832     Q_i = Q->get_Q(i,active_size);
833 
834   for(int j=0;j<active_size;j++)
835   {
836     if(y[j]==+1)
837     {
838       if (!is_lower_bound(j))
839       {
840         double grad_diff=Gmax+G[j];
841         if (G[j] >= Gmax2)
842           Gmax2 = G[j];
843         if (grad_diff > 0)
844         {
845           double obj_diff;
846           double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
847           if (quad_coef > 0)
848             obj_diff = -(grad_diff*grad_diff)/quad_coef;
849           else
850             obj_diff = -(grad_diff*grad_diff)/TAU;
851 
852           if (obj_diff <= obj_diff_min)
853           {
854             Gmin_idx=j;
855             obj_diff_min = obj_diff;
856           }
857         }
858       }
859     }
860     else
861     {
862       if (!is_upper_bound(j))
863       {
864         double grad_diff= Gmax-G[j];
865         if (-G[j] >= Gmax2)
866           Gmax2 = -G[j];
867         if (grad_diff > 0)
868         {
869           double obj_diff;
870           double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
871           if (quad_coef > 0)
872             obj_diff = -(grad_diff*grad_diff)/quad_coef;
873           else
874             obj_diff = -(grad_diff*grad_diff)/TAU;
875 
876           if (obj_diff <= obj_diff_min)
877           {
878             Gmin_idx=j;
879             obj_diff_min = obj_diff;
880           }
881         }
882       }
883     }
884   }
885 
886   if(Gmax+Gmax2 < eps)
887     return 1;
888 
889   out_i = Gmax_idx;
890   out_j = Gmin_idx;
891   return 0;
892 }
893 
be_shrunk(int i,double Gmax1,double Gmax2)894 bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
895 {
896   if(is_upper_bound(i))
897   {
898     if(y[i]==+1)
899       return(-G[i] > Gmax1);
900     else
901       return(-G[i] > Gmax2);
902   }
903   else if(is_lower_bound(i))
904   {
905     if(y[i]==+1)
906       return(G[i] > Gmax2);
907     else
908       return(G[i] > Gmax1);
909   }
910   else
911     return(false);
912 }
913 
do_shrinking()914 void Solver::do_shrinking()
915 {
916   int i;
917   double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
918   double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
919 
920   // find maximal violating pair first
921   for(i=0;i<active_size;i++)
922   {
923     if(y[i]==+1)
924     {
925       if(!is_upper_bound(i))
926       {
927         if(-G[i] >= Gmax1)
928           Gmax1 = -G[i];
929       }
930       if(!is_lower_bound(i))
931       {
932         if(G[i] >= Gmax2)
933           Gmax2 = G[i];
934       }
935     }
936     else
937     {
938       if(!is_upper_bound(i))
939       {
940         if(-G[i] >= Gmax2)
941           Gmax2 = -G[i];
942       }
943       if(!is_lower_bound(i))
944       {
945         if(G[i] >= Gmax1)
946           Gmax1 = G[i];
947       }
948     }
949   }
950 
951   if(unshrink == false && Gmax1 + Gmax2 <= eps*10)
952   {
953     unshrink = true;
954     reconstruct_gradient();
955     active_size = l;
956     info("*");
957   }
958 
959   for(i=0;i<active_size;i++)
960     if (be_shrunk(i, Gmax1, Gmax2))
961     {
962       active_size--;
963       while (active_size > i)
964       {
965         if (!be_shrunk(active_size, Gmax1, Gmax2))
966         {
967           swap_index(i,active_size);
968           break;
969         }
970         active_size--;
971       }
972     }
973 }
974 
calculate_rho()975 double Solver::calculate_rho()
976 {
977   double r;
978   int nr_free = 0;
979   double ub = INF, lb = -INF, sum_free = 0;
980   for(int i=0;i<active_size;i++)
981   {
982     double yG = y[i]*G[i];
983 
984     if(is_upper_bound(i))
985     {
986       if(y[i]==-1)
987         ub = min(ub,yG);
988       else
989         lb = max(lb,yG);
990     }
991     else if(is_lower_bound(i))
992     {
993       if(y[i]==+1)
994         ub = min(ub,yG);
995       else
996         lb = max(lb,yG);
997     }
998     else
999     {
1000       ++nr_free;
1001       sum_free += yG;
1002     }
1003   }
1004 
1005   if(nr_free>0)
1006     r = sum_free/nr_free;
1007   else
1008     r = (ub+lb)/2;
1009 
1010   return r;
1011 }
1012 
1013 //
1014 // Solver for nu-svm classification and regression
1015 //
1016 // additional constraint: e^T \alpha = constant
1017 //
1018 class Solver_NU : public Solver
1019 {
1020 public:
Solver_NU()1021   Solver_NU() {}
Solve(int l,const QMatrix & Q,const double * p,const schar * y,double * alpha,double * C_,double eps,SolutionInfo * si,int shrinking)1022   void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
1023              double *alpha, double* C_, double eps,
1024              SolutionInfo* si, int shrinking)
1025   {
1026     this->si = si;
1027     Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking);
1028   }
1029 private:
1030   SolutionInfo *si;
1031   int select_working_set(int &i, int &j);
1032   double calculate_rho();
1033   bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
1034   void do_shrinking();
1035 };
1036 
1037 // return 1 if already optimal, return 0 otherwise
select_working_set(int & out_i,int & out_j)1038 int Solver_NU::select_working_set(int &out_i, int &out_j)
1039 {
1040   // return i,j such that y_i = y_j and
1041   // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
1042   // j: minimizes the decrease of obj value
1043   //    (if quadratic coefficeint <= 0, replace it with tau)
1044   //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
1045 
1046   double Gmaxp = -INF;
1047   double Gmaxp2 = -INF;
1048   int Gmaxp_idx = -1;
1049 
1050   double Gmaxn = -INF;
1051   double Gmaxn2 = -INF;
1052   int Gmaxn_idx = -1;
1053 
1054   int Gmin_idx = -1;
1055   double obj_diff_min = INF;
1056 
1057   for(int t=0;t<active_size;t++)
1058     if(y[t]==+1)
1059     {
1060       if(!is_upper_bound(t))
1061         if(-G[t] >= Gmaxp)
1062         {
1063           Gmaxp = -G[t];
1064           Gmaxp_idx = t;
1065         }
1066     }
1067     else
1068     {
1069       if(!is_lower_bound(t))
1070         if(G[t] >= Gmaxn)
1071         {
1072           Gmaxn = G[t];
1073           Gmaxn_idx = t;
1074         }
1075     }
1076 
1077   int ip = Gmaxp_idx;
1078   int in = Gmaxn_idx;
1079   const Qfloat *Q_ip = NULL;
1080   const Qfloat *Q_in = NULL;
1081   if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
1082     Q_ip = Q->get_Q(ip,active_size);
1083   if(in != -1)
1084     Q_in = Q->get_Q(in,active_size);
1085 
1086   for(int j=0;j<active_size;j++)
1087   {
1088     if(y[j]==+1)
1089     {
1090       if (!is_lower_bound(j))
1091       {
1092         double grad_diff=Gmaxp+G[j];
1093         if (G[j] >= Gmaxp2)
1094           Gmaxp2 = G[j];
1095         if (grad_diff > 0)
1096         {
1097           double obj_diff;
1098           double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
1099           if (quad_coef > 0)
1100             obj_diff = -(grad_diff*grad_diff)/quad_coef;
1101           else
1102             obj_diff = -(grad_diff*grad_diff)/TAU;
1103 
1104           if (obj_diff <= obj_diff_min)
1105           {
1106             Gmin_idx=j;
1107             obj_diff_min = obj_diff;
1108           }
1109         }
1110       }
1111     }
1112     else
1113     {
1114       if (!is_upper_bound(j))
1115       {
1116         double grad_diff=Gmaxn-G[j];
1117         if (-G[j] >= Gmaxn2)
1118           Gmaxn2 = -G[j];
1119         if (grad_diff > 0)
1120         {
1121           double obj_diff;
1122           double quad_coef = QD[in]+QD[j]-2*Q_in[j];
1123           if (quad_coef > 0)
1124             obj_diff = -(grad_diff*grad_diff)/quad_coef;
1125           else
1126             obj_diff = -(grad_diff*grad_diff)/TAU;
1127 
1128           if (obj_diff <= obj_diff_min)
1129           {
1130             Gmin_idx=j;
1131             obj_diff_min = obj_diff;
1132           }
1133         }
1134       }
1135     }
1136   }
1137 
1138   if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
1139     return 1;
1140 
1141   if (y[Gmin_idx] == +1)
1142     out_i = Gmaxp_idx;
1143   else
1144     out_i = Gmaxn_idx;
1145   out_j = Gmin_idx;
1146 
1147   return 0;
1148 }
1149 
be_shrunk(int i,double Gmax1,double Gmax2,double Gmax3,double Gmax4)1150 bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
1151 {
1152   if(is_upper_bound(i))
1153   {
1154     if(y[i]==+1)
1155       return(-G[i] > Gmax1);
1156     else
1157       return(-G[i] > Gmax4);
1158   }
1159   else if(is_lower_bound(i))
1160   {
1161     if(y[i]==+1)
1162       return(G[i] > Gmax2);
1163     else
1164       return(G[i] > Gmax3);
1165   }
1166   else
1167     return(false);
1168 }
1169 
do_shrinking()1170 void Solver_NU::do_shrinking()
1171 {
1172   double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
1173   double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
1174   double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
1175   double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
1176 
1177   // find maximal violating pair first
1178   int i;
1179   for(i=0;i<active_size;i++)
1180   {
1181     if(!is_upper_bound(i))
1182     {
1183       if(y[i]==+1)
1184       {
1185         if(-G[i] > Gmax1) Gmax1 = -G[i];
1186       }
1187       else	if(-G[i] > Gmax4) Gmax4 = -G[i];
1188     }
1189     if(!is_lower_bound(i))
1190     {
1191       if(y[i]==+1)
1192       {
1193         if(G[i] > Gmax2) Gmax2 = G[i];
1194       }
1195       else	if(G[i] > Gmax3) Gmax3 = G[i];
1196     }
1197   }
1198 
1199   if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
1200   {
1201     unshrink = true;
1202     reconstruct_gradient();
1203     active_size = l;
1204   }
1205 
1206   for(i=0;i<active_size;i++)
1207     if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
1208     {
1209       active_size--;
1210       while (active_size > i)
1211       {
1212         if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
1213         {
1214           swap_index(i,active_size);
1215           break;
1216         }
1217         active_size--;
1218       }
1219     }
1220 }
1221 
calculate_rho()1222 double Solver_NU::calculate_rho()
1223 {
1224   int nr_free1 = 0,nr_free2 = 0;
1225   double ub1 = INF, ub2 = INF;
1226   double lb1 = -INF, lb2 = -INF;
1227   double sum_free1 = 0, sum_free2 = 0;
1228 
1229   for(int i=0;i<active_size;i++)
1230   {
1231     if(y[i]==+1)
1232     {
1233       if(is_upper_bound(i))
1234         lb1 = max(lb1,G[i]);
1235       else if(is_lower_bound(i))
1236         ub1 = min(ub1,G[i]);
1237       else
1238       {
1239         ++nr_free1;
1240         sum_free1 += G[i];
1241       }
1242     }
1243     else
1244     {
1245       if(is_upper_bound(i))
1246         lb2 = max(lb2,G[i]);
1247       else if(is_lower_bound(i))
1248         ub2 = min(ub2,G[i]);
1249       else
1250       {
1251         ++nr_free2;
1252         sum_free2 += G[i];
1253       }
1254     }
1255   }
1256 
1257   double r1,r2;
1258   if(nr_free1 > 0)
1259     r1 = sum_free1/nr_free1;
1260   else
1261     r1 = (ub1+lb1)/2;
1262 
1263   if(nr_free2 > 0)
1264     r2 = sum_free2/nr_free2;
1265   else
1266     r2 = (ub2+lb2)/2;
1267 
1268   si->r = (r1+r2)/2;
1269   return (r1-r2)/2;
1270 }
1271 
1272 //
1273 // Q matrices for various formulations
1274 //
1275 class SVC_Q: public Kernel
1276 {
1277 public:
SVC_Q(const svm_problem & prob,const svm_parameter & param,const schar * y_)1278   SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
1279 	:Kernel(prob.l, prob.x, param)
1280   {
1281     clone(y,y_,prob.l);
1282     cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
1283     QD = new double[prob.l];
1284     for(int i=0;i<prob.l;i++)
1285       QD[i] = (this->*kernel_function)(i,i);
1286   }
1287 
get_Q(int i,int len) const1288   Qfloat *get_Q(int i, int len) const
1289   {
1290     Qfloat *data;
1291     int start, j;
1292     if((start = cache->get_data(i,&data,len)) < len)
1293     {
1294       for(j=start;j<len;j++)
1295         data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
1296     }
1297     return data;
1298   }
1299 
get_QD() const1300   double *get_QD() const
1301   {
1302     return QD;
1303   }
1304 
swap_index(int i,int j) const1305   void swap_index(int i, int j) const
1306   {
1307     cache->swap_index(i,j);
1308     Kernel::swap_index(i,j);
1309     swap(y[i],y[j]);
1310     swap(QD[i],QD[j]);
1311   }
1312 
~SVC_Q()1313   ~SVC_Q()
1314   {
1315     delete[] y;
1316     delete cache;
1317     delete[] QD;
1318   }
1319 private:
1320   schar *y;
1321   Cache *cache;
1322   double *QD;
1323 };
1324 
1325 class ONE_CLASS_Q: public Kernel
1326 {
1327 public:
ONE_CLASS_Q(const svm_problem & prob,const svm_parameter & param)1328   ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
1329 	:Kernel(prob.l, prob.x, param)
1330   {
1331     cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
1332     QD = new double[prob.l];
1333     for(int i=0;i<prob.l;i++)
1334       QD[i] = (this->*kernel_function)(i,i);
1335   }
1336 
get_Q(int i,int len) const1337   Qfloat *get_Q(int i, int len) const
1338   {
1339     Qfloat *data;
1340     int start, j;
1341     if((start = cache->get_data(i,&data,len)) < len)
1342     {
1343       for(j=start;j<len;j++)
1344         data[j] = (Qfloat)(this->*kernel_function)(i,j);
1345     }
1346     return data;
1347   }
1348 
get_QD() const1349   double *get_QD() const
1350   {
1351     return QD;
1352   }
1353 
swap_index(int i,int j) const1354   void swap_index(int i, int j) const
1355   {
1356     cache->swap_index(i,j);
1357     Kernel::swap_index(i,j);
1358     swap(QD[i],QD[j]);
1359   }
1360 
~ONE_CLASS_Q()1361   ~ONE_CLASS_Q()
1362   {
1363     delete cache;
1364     delete[] QD;
1365   }
1366 private:
1367   Cache *cache;
1368   double *QD;
1369 };
1370 
1371 class SVR_Q: public Kernel
1372 {
1373 public:
SVR_Q(const svm_problem & prob,const svm_parameter & param)1374   SVR_Q(const svm_problem& prob, const svm_parameter& param)
1375 	:Kernel(prob.l, prob.x, param)
1376   {
1377     l = prob.l;
1378     cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
1379     QD = new double[2*l];
1380     sign = new schar[2*l];
1381     index = new int[2*l];
1382     for(int k=0;k<l;k++)
1383     {
1384       sign[k] = 1;
1385       sign[k+l] = -1;
1386       index[k] = k;
1387       index[k+l] = k;
1388       QD[k] = (this->*kernel_function)(k,k);
1389       QD[k+l] = QD[k];
1390     }
1391     buffer[0] = new Qfloat[2*l];
1392     buffer[1] = new Qfloat[2*l];
1393     next_buffer = 0;
1394   }
1395 
swap_index(int i,int j) const1396   void swap_index(int i, int j) const
1397   {
1398     swap(sign[i],sign[j]);
1399     swap(index[i],index[j]);
1400     swap(QD[i],QD[j]);
1401   }
1402 
get_Q(int i,int len) const1403   Qfloat *get_Q(int i, int len) const
1404   {
1405     Qfloat *data;
1406     int j, real_i = index[i];
1407     if(cache->get_data(real_i,&data,l) < l)
1408     {
1409       for(j=0;j<l;j++)
1410         data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
1411     }
1412 
1413     // reorder and copy
1414     Qfloat *buf = buffer[next_buffer];
1415     next_buffer = 1 - next_buffer;
1416     schar si = sign[i];
1417     for(j=0;j<len;j++)
1418       buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
1419     return buf;
1420   }
1421 
get_QD() const1422   double *get_QD() const
1423   {
1424     return QD;
1425   }
1426 
~SVR_Q()1427   ~SVR_Q()
1428   {
1429     delete cache;
1430     delete[] sign;
1431     delete[] index;
1432     delete[] buffer[0];
1433     delete[] buffer[1];
1434     delete[] QD;
1435   }
1436 private:
1437   int l;
1438   Cache *cache;
1439   schar *sign;
1440   int *index;
1441   mutable int next_buffer;
1442   Qfloat *buffer[2];
1443   double *QD;
1444 };
1445 #include <iostream>
1446 //
1447 // construct and solve various formulations
1448 //
solve_c_svc(const svm_problem * prob,const svm_parameter * param,double * alpha,Solver::SolutionInfo * si,double Cp,double Cn)1449 static void solve_c_svc(
1450                         const svm_problem *prob, const svm_parameter* param,
1451                         double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
1452 {
1453   int l = prob->l;
1454   double *minus_ones = new double[l];
1455   schar *y = new schar[l];
1456   double *C = new double[l];
1457 
1458   int i;
1459 
1460   for(i=0;i<l;i++)
1461   {
1462     alpha[i] = 0;
1463     minus_ones[i] = -1;
1464     if(prob->y[i] > 0)
1465     {
1466       y[i] = +1;
1467       C[i] = prob->W[i]*Cp;
1468     }
1469     else
1470     {
1471       y[i] = -1;
1472       C[i] = prob->W[i]*Cn;
1473     }
1474     //std::cout << C[i] << " ";
1475   }
1476   //std::cout << std::endl;
1477 
1478   Solver s;
1479   s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
1480           alpha, C, param->eps, si, param->shrinking);
1481 
1482   /*
1483 	double sum_alpha=0;
1484 	for(i=0;i<l;i++)
1485     sum_alpha += alpha[i];
1486 	if (Cp==Cn)
1487     info("nu = %f\n", sum_alpha/(Cp*prob->l));
1488   */
1489 
1490   for(i=0;i<l;i++)
1491     alpha[i] *= y[i];
1492 
1493   delete[] C;
1494   delete[] minus_ones;
1495   delete[] y;
1496 }
1497 
solve_nu_svc(const svm_problem * prob,const svm_parameter * param,double * alpha,Solver::SolutionInfo * si)1498 static void solve_nu_svc(
1499                          const svm_problem *prob, const svm_parameter *param,
1500                          double *alpha, Solver::SolutionInfo* si)
1501 {
1502   int i;
1503   int l = prob->l;
1504   double nu = param->nu;
1505 
1506   schar *y = new schar[l];
1507   double *C = new double[l];
1508 
1509   for(i=0;i<l;i++)
1510   {
1511     if(prob->y[i]>0)
1512       y[i] = +1;
1513     else
1514       y[i] = -1;
1515     C[i] = prob->W[i];
1516   }
1517 
1518   double nu_l = 0;
1519   for(i=0;i<l;i++) nu_l += nu*C[i];
1520   double sum_pos = nu_l/2;
1521   double sum_neg = nu_l/2;
1522 
1523   for(i=0;i<l;i++)
1524     if(y[i] == +1)
1525     {
1526       alpha[i] = min(C[i],sum_pos);
1527       sum_pos -= alpha[i];
1528     }
1529     else
1530     {
1531       alpha[i] = min(C[i],sum_neg);
1532       sum_neg -= alpha[i];
1533     }
1534 
1535   double *zeros = new double[l];
1536 
1537   for(i=0;i<l;i++)
1538     zeros[i] = 0;
1539 
1540   Solver_NU s;
1541   s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
1542           alpha, C, param->eps, si,  param->shrinking);
1543   double r = si->r;
1544 
1545   info("C = %f\n",1/r);
1546 
1547   for(i=0;i<l;i++)
1548   {
1549     alpha[i] *= y[i]/r;
1550     si->upper_bound[i] /= r;
1551   }
1552 
1553   si->rho /= r;
1554   si->obj /= (r*r);
1555 
1556   delete[] C;
1557   delete[] y;
1558   delete[] zeros;
1559 }
1560 
solve_one_class(const svm_problem * prob,const svm_parameter * param,double * alpha,Solver::SolutionInfo * si)1561 static void solve_one_class(
1562                             const svm_problem *prob, const svm_parameter *param,
1563                             double *alpha, Solver::SolutionInfo* si)
1564 {
1565   int l = prob->l;
1566   double *zeros = new double[l];
1567   schar *ones = new schar[l];
1568   double *C = new double[l];
1569   int i;
1570 
1571   double nu_l = 0;
1572 
1573   for(i=0;i<l;i++)
1574   {
1575     C[i] = prob->W[i];
1576     nu_l += C[i] * param->nu;
1577   }
1578 
1579   i = 0;
1580   while(nu_l > 0)
1581   {
1582     alpha[i] = min(C[i],nu_l);
1583     nu_l -= alpha[i];
1584     ++i;
1585   }
1586   for(;i<l;i++)
1587     alpha[i] = 0;
1588 
1589   for(i=0;i<l;i++)
1590   {
1591     zeros[i] = 0;
1592     ones[i] = 1;
1593   }
1594 
1595   Solver s;
1596   s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
1597           alpha, C, param->eps, si, param->shrinking);
1598 
1599   delete[] C;
1600   delete[] zeros;
1601   delete[] ones;
1602 }
1603 
solve_epsilon_svr(const svm_problem * prob,const svm_parameter * param,double * alpha,Solver::SolutionInfo * si)1604 static void solve_epsilon_svr(
1605                               const svm_problem *prob, const svm_parameter *param,
1606                               double *alpha, Solver::SolutionInfo* si)
1607 {
1608   int l = prob->l;
1609   double *alpha2 = new double[2*l];
1610   double *linear_term = new double[2*l];
1611   double *C = new double[2*l];
1612   schar *y = new schar[2*l];
1613   int i;
1614 
1615   for(i=0;i<l;i++)
1616   {
1617     alpha2[i] = 0;
1618     linear_term[i] = param->p - prob->y[i];
1619     y[i] = 1;
1620     C[i] = prob->W[i]*param->C;
1621 
1622     alpha2[i+l] = 0;
1623     linear_term[i+l] = param->p + prob->y[i];
1624     y[i+l] = -1;
1625     C[i+l] = prob->W[i]*param->C;
1626   }
1627 
1628   Solver s;
1629   s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
1630           alpha2, C, param->eps, si, param->shrinking);
1631   double sum_alpha = 0;
1632   for(i=0;i<l;i++)
1633   {
1634     alpha[i] = alpha2[i] - alpha2[i+l];
1635     sum_alpha += fabs(alpha[i]);
1636   }
1637   //info("nu = %f\n",sum_alpha/(param->C*l));
1638   delete[] alpha2;
1639   delete[] linear_term;
1640   delete[] C;
1641   delete[] y;
1642 }
1643 
solve_nu_svr(const svm_problem * prob,const svm_parameter * param,double * alpha,Solver::SolutionInfo * si)1644 static void solve_nu_svr(
1645                          const svm_problem *prob, const svm_parameter *param,
1646                          double *alpha, Solver::SolutionInfo* si)
1647 {
1648   int l = prob->l;
1649   double *C = new double[2*l];
1650   double *alpha2 = new double[2*l];
1651   double *linear_term = new double[2*l];
1652   schar *y = new schar[2*l];
1653   int i;
1654 
1655   double sum = 0;
1656   for(i=0;i<l;i++)
1657   {
1658     C[i] = C[i+l] = prob->W[i]*param->C;
1659     sum += C[i] * param->nu;
1660   }
1661   sum /= 2;
1662 
1663   for(i=0;i<l;i++)
1664   {
1665     alpha2[i] = alpha2[i+l] = min(sum,C[i]);
1666     sum -= alpha2[i];
1667 
1668     linear_term[i] = - prob->y[i];
1669     y[i] = 1;
1670 
1671     linear_term[i+l] = prob->y[i];
1672     y[i+l] = -1;
1673   }
1674 
1675   Solver_NU s;
1676   s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
1677           alpha2, C, param->eps, si, param->shrinking);
1678 
1679   info("epsilon = %f\n",-si->r);
1680 
1681   for(i=0;i<l;i++)
1682     alpha[i] = alpha2[i] - alpha2[i+l];
1683 
1684   delete[] alpha2;
1685   delete[] linear_term;
1686   delete[] C;
1687   delete[] y;
1688 }
1689 
1690 //
1691 // decision_function
1692 //
1693 struct decision_function
1694 {
1695   double *alpha;
1696   double rho;
1697 };
1698 
svm_train_one(const svm_problem * prob,const svm_parameter * param,double Cp,double Cn)1699 static decision_function svm_train_one(
1700                                        const svm_problem *prob, const svm_parameter *param,
1701                                        double Cp, double Cn)
1702 {
1703   double *alpha = Malloc(double,prob->l);
1704   Solver::SolutionInfo si;
1705   switch(param->svm_type)
1706   {
1707   case C_SVC:
1708     si.upper_bound = Malloc(double,prob->l);
1709     solve_c_svc(prob,param,alpha,&si,Cp,Cn);
1710     break;
1711   case NU_SVC:
1712     si.upper_bound = Malloc(double,prob->l);
1713     solve_nu_svc(prob,param,alpha,&si);
1714     break;
1715   case ONE_CLASS:
1716     si.upper_bound = Malloc(double,prob->l);
1717     solve_one_class(prob,param,alpha,&si);
1718     break;
1719   case EPSILON_SVR:
1720     si.upper_bound = Malloc(double,2*prob->l);
1721     solve_epsilon_svr(prob,param,alpha,&si);
1722     break;
1723   case NU_SVR:
1724     si.upper_bound = Malloc(double,2*prob->l);
1725     solve_nu_svr(prob,param,alpha,&si);
1726     break;
1727   }
1728 
1729   info("obj = %f, rho = %f\n",si.obj,si.rho);
1730 
1731   // output SVs
1732 
1733   int nSV = 0;
1734   int nBSV = 0;
1735   for(int i=0;i<prob->l;i++)
1736   {
1737     if(fabs(alpha[i]) > 0)
1738     {
1739       ++nSV;
1740       if(prob->y[i] > 0)
1741       {
1742         if(fabs(alpha[i]) >= si.upper_bound[i])
1743           ++nBSV;
1744       }
1745       else
1746       {
1747         if(fabs(alpha[i]) >= si.upper_bound[i])
1748           ++nBSV;
1749       }
1750     }
1751   }
1752 
1753   free(si.upper_bound);
1754 
1755   info("nSV = %d, nBSV = %d\n",nSV,nBSV);
1756 
1757   decision_function f;
1758   f.alpha = alpha;
1759   f.rho = si.rho;
1760   return f;
1761 }
1762 
1763 // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
sigmoid_train(int l,const double * dec_values,const double * labels,double & A,double & B)1764 static void sigmoid_train(
1765                           int l, const double *dec_values, const double *labels,
1766                           double& A, double& B)
1767 {
1768   double prior1=0, prior0 = 0;
1769   int i;
1770 
1771   for (i=0;i<l;i++)
1772     if (labels[i] > 0) prior1+=1;
1773     else prior0+=1;
1774 
1775   int max_iter=100;	// Maximal number of iterations
1776   double min_step=1e-10;	// Minimal step taken in line search
1777   double sigma=1e-12;	// For numerically strict PD of Hessian
1778   double eps=1e-5;
1779   double hiTarget=(prior1+1.0)/(prior1+2.0);
1780   double loTarget=1/(prior0+2.0);
1781   double *t=Malloc(double,l);
1782   double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
1783   double newA,newB,newf,d1,d2;
1784   int iter;
1785 
1786   // Initial Point and Initial Fun Value
1787   A=0.0; B=log((prior0+1.0)/(prior1+1.0));
1788   double fval = 0.0;
1789 
1790   for (i=0;i<l;i++)
1791   {
1792     if (labels[i]>0) t[i]=hiTarget;
1793     else t[i]=loTarget;
1794     fApB = dec_values[i]*A+B;
1795     if (fApB>=0)
1796       fval += t[i]*fApB + log(1+exp(-fApB));
1797     else
1798       fval += (t[i] - 1)*fApB +log(1+exp(fApB));
1799   }
1800   for (iter=0;iter<max_iter;iter++)
1801   {
1802     // Update Gradient and Hessian (use H' = H + sigma I)
1803     h11=sigma; // numerically ensures strict PD
1804     h22=sigma;
1805     h21=0.0;g1=0.0;g2=0.0;
1806     for (i=0;i<l;i++)
1807     {
1808       fApB = dec_values[i]*A+B;
1809       if (fApB >= 0)
1810       {
1811         p=exp(-fApB)/(1.0+exp(-fApB));
1812         q=1.0/(1.0+exp(-fApB));
1813       }
1814       else
1815       {
1816         p=1.0/(1.0+exp(fApB));
1817         q=exp(fApB)/(1.0+exp(fApB));
1818       }
1819       d2=p*q;
1820       h11+=dec_values[i]*dec_values[i]*d2;
1821       h22+=d2;
1822       h21+=dec_values[i]*d2;
1823       d1=t[i]-p;
1824       g1+=dec_values[i]*d1;
1825       g2+=d1;
1826     }
1827 
1828     // Stopping Criteria
1829     if (fabs(g1)<eps && fabs(g2)<eps)
1830       break;
1831 
1832     // Finding Newton direction: -inv(H') * g
1833     det=h11*h22-h21*h21;
1834     dA=-(h22*g1 - h21 * g2) / det;
1835     dB=-(-h21*g1+ h11 * g2) / det;
1836     gd=g1*dA+g2*dB;
1837 
1838 
1839     stepsize = 1;		// Line Search
1840     while (stepsize >= min_step)
1841     {
1842       newA = A + stepsize * dA;
1843       newB = B + stepsize * dB;
1844 
1845       // New function value
1846       newf = 0.0;
1847       for (i=0;i<l;i++)
1848       {
1849         fApB = dec_values[i]*newA+newB;
1850         if (fApB >= 0)
1851           newf += t[i]*fApB + log(1+exp(-fApB));
1852         else
1853           newf += (t[i] - 1)*fApB +log(1+exp(fApB));
1854       }
1855       // Check sufficient decrease
1856       if (newf<fval+0.0001*stepsize*gd)
1857       {
1858         A=newA;B=newB;fval=newf;
1859         break;
1860       }
1861       else
1862         stepsize = stepsize / 2.0;
1863     }
1864 
1865     if (stepsize < min_step)
1866     {
1867       info("Line search fails in two-class probability estimates\n");
1868       break;
1869     }
1870   }
1871 
1872   if (iter>=max_iter)
1873     info("Reaching maximal iterations in two-class probability estimates\n");
1874   free(t);
1875 }
1876 
sigmoid_predict(double decision_value,double A,double B)1877 static double sigmoid_predict(double decision_value, double A, double B)
1878 {
1879   double fApB = decision_value*A+B;
1880   // 1-p used later; avoid catastrophic cancellation
1881   if (fApB >= 0)
1882     return exp(-fApB)/(1.0+exp(-fApB));
1883   else
1884     return 1.0/(1+exp(fApB)) ;
1885 }
1886 
1887 // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
multiclass_probability(int k,double ** r,double * p)1888 static void multiclass_probability(int k, double **r, double *p)
1889 {
1890   int t,j;
1891   int iter = 0, max_iter=max(100,k);
1892   double **Q=Malloc(double *,k);
1893   double *Qp=Malloc(double,k);
1894   double pQp, eps=0.005/k;
1895 
1896   for (t=0;t<k;t++)
1897   {
1898     p[t]=1.0/k;  // Valid if k = 1
1899     Q[t]=Malloc(double,k);
1900     Q[t][t]=0;
1901     for (j=0;j<t;j++)
1902     {
1903       Q[t][t]+=r[j][t]*r[j][t];
1904       Q[t][j]=Q[j][t];
1905     }
1906     for (j=t+1;j<k;j++)
1907     {
1908       Q[t][t]+=r[j][t]*r[j][t];
1909       Q[t][j]=-r[j][t]*r[t][j];
1910     }
1911   }
1912   for (iter=0;iter<max_iter;iter++)
1913   {
1914     // stopping condition, recalculate QP,pQP for numerical accuracy
1915     pQp=0;
1916     for (t=0;t<k;t++)
1917     {
1918       Qp[t]=0;
1919       for (j=0;j<k;j++)
1920         Qp[t]+=Q[t][j]*p[j];
1921       pQp+=p[t]*Qp[t];
1922     }
1923     double max_error=0;
1924     for (t=0;t<k;t++)
1925     {
1926       double error=fabs(Qp[t]-pQp);
1927       if (error>max_error)
1928         max_error=error;
1929     }
1930     if (max_error<eps) break;
1931 
1932     for (t=0;t<k;t++)
1933     {
1934       double diff=(-Qp[t]+pQp)/Q[t][t];
1935       p[t]+=diff;
1936       pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
1937       for (j=0;j<k;j++)
1938       {
1939         Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
1940         p[j]/=(1+diff);
1941       }
1942     }
1943   }
1944   if (iter>=max_iter)
1945     info("Exceeds max_iter in multiclass_prob\n");
1946   for(t=0;t<k;t++) free(Q[t]);
1947   free(Q);
1948   free(Qp);
1949 }
1950 
1951 // Cross-validation decision values for probability estimates
svm_binary_svc_probability(const svm_problem * prob,const svm_parameter * param,double Cp,double Cn,double & probA,double & probB)1952 static void svm_binary_svc_probability(
1953                                        const svm_problem *prob, const svm_parameter *param,
1954                                        double Cp, double Cn, double& probA, double& probB)
1955 {
1956   int i;
1957   int nr_fold = 5;
1958   int *perm = Malloc(int,prob->l);
1959   double *dec_values = Malloc(double,prob->l);
1960 
1961   // random shuffle
1962   for(i=0;i<prob->l;i++) perm[i]=i;
1963   for(i=0;i<prob->l;i++)
1964   {
1965     int j = i+rand()%(prob->l-i);
1966     swap(perm[i],perm[j]);
1967   }
1968   for(i=0;i<nr_fold;i++)
1969   {
1970     int begin = i*prob->l/nr_fold;
1971     int end = (i+1)*prob->l/nr_fold;
1972     int j,k;
1973     struct svm_problem subprob;
1974 
1975     subprob.l = prob->l-(end-begin);
1976     subprob.x = Malloc(struct svm_node*,subprob.l);
1977     subprob.y = Malloc(double,subprob.l);
1978     subprob.W = Malloc(double,subprob.l);
1979 
1980     k=0;
1981     for(j=0;j<begin;j++)
1982     {
1983       subprob.x[k] = prob->x[perm[j]];
1984       subprob.y[k] = prob->y[perm[j]];
1985       subprob.W[k] = prob->W[perm[j]];
1986       ++k;
1987     }
1988     for(j=end;j<prob->l;j++)
1989     {
1990       subprob.x[k] = prob->x[perm[j]];
1991       subprob.y[k] = prob->y[perm[j]];
1992       subprob.W[k] = prob->W[perm[j]];
1993       ++k;
1994     }
1995     int p_count=0,n_count=0;
1996     for(j=0;j<k;j++)
1997       if(subprob.y[j]>0)
1998         p_count++;
1999       else
2000         n_count++;
2001 
2002     if(p_count==0 && n_count==0)
2003       for(j=begin;j<end;j++)
2004         dec_values[perm[j]] = 0;
2005     else if(p_count > 0 && n_count == 0)
2006       for(j=begin;j<end;j++)
2007         dec_values[perm[j]] = 1;
2008     else if(p_count == 0 && n_count > 0)
2009       for(j=begin;j<end;j++)
2010         dec_values[perm[j]] = -1;
2011     else
2012     {
2013       svm_parameter subparam = *param;
2014       subparam.probability=0;
2015       subparam.C=1.0;
2016       subparam.nr_weight=2;
2017       subparam.weight_label = Malloc(int,2);
2018       subparam.weight = Malloc(double,2);
2019       subparam.weight_label[0]=+1;
2020       subparam.weight_label[1]=-1;
2021       subparam.weight[0]=Cp;
2022       subparam.weight[1]=Cn;
2023       struct svm_model *submodel = svm_train(&subprob,&subparam);
2024       for(j=begin;j<end;j++)
2025       {
2026         svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
2027         // ensure +1 -1 order; reason not using CV subroutine
2028         dec_values[perm[j]] *= submodel->label[0];
2029       }
2030       svm_free_and_destroy_model(&submodel);
2031       svm_destroy_param(&subparam);
2032     }
2033     free(subprob.x);
2034     free(subprob.y);
2035     free(subprob.W);
2036   }
2037   sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
2038   free(dec_values);
2039   free(perm);
2040 }
2041 
2042 // Return parameter of a Laplace distribution
svm_svr_probability(const svm_problem * prob,const svm_parameter * param)2043 static double svm_svr_probability(
2044                                   const svm_problem *prob, const svm_parameter *param)
2045 {
2046   int i;
2047   int nr_fold = 5;
2048   double *ymv = Malloc(double,prob->l);
2049   double mae = 0;
2050 
2051   svm_parameter newparam = *param;
2052   newparam.probability = 0;
2053   svm_cross_validation(prob,&newparam,nr_fold,ymv);
2054   for(i=0;i<prob->l;i++)
2055   {
2056     ymv[i]=prob->y[i]-ymv[i];
2057     mae += fabs(ymv[i]);
2058   }
2059   mae /= prob->l;
2060   double std=sqrt(2*mae*mae);
2061   int count=0;
2062   mae=0;
2063   for(i=0;i<prob->l;i++)
2064     if (fabs(ymv[i]) > 5*std)
2065       count=count+1;
2066     else
2067       mae+=fabs(ymv[i]);
2068   mae /= (prob->l-count);
2069   info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
2070   free(ymv);
2071   return mae;
2072 }
2073 
2074 
2075 // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
2076 // perm, length l, must be allocated before calling this subroutine
svm_group_classes(const svm_problem * prob,int * nr_class_ret,int ** label_ret,int ** start_ret,int ** count_ret,int * perm)2077 static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
2078 {
2079   int l = prob->l;
2080   int max_nr_class = 16;
2081   int nr_class = 0;
2082   int *label = Malloc(int,max_nr_class);
2083   int *count = Malloc(int,max_nr_class);
2084   int *data_label = Malloc(int,l);
2085   int i;
2086 
2087   for(i=0;i<l;i++)
2088   {
2089     int this_label = (int)prob->y[i];
2090     int j;
2091     for(j=0;j<nr_class;j++)
2092     {
2093       if(this_label == label[j])
2094       {
2095         ++count[j];
2096         break;
2097       }
2098     }
2099     data_label[i] = j;
2100     if(j == nr_class)
2101     {
2102       if(nr_class == max_nr_class)
2103       {
2104         max_nr_class *= 2;
2105         label = (int *)realloc(label,max_nr_class*sizeof(int));
2106         count = (int *)realloc(count,max_nr_class*sizeof(int));
2107       }
2108       label[nr_class] = this_label;
2109       count[nr_class] = 1;
2110       ++nr_class;
2111     }
2112   }
2113 
2114   int *start = Malloc(int,nr_class);
2115   start[0] = 0;
2116   for(i=1;i<nr_class;i++)
2117     start[i] = start[i-1]+count[i-1];
2118   for(i=0;i<l;i++)
2119   {
2120     perm[start[data_label[i]]] = i;
2121     ++start[data_label[i]];
2122   }
2123   start[0] = 0;
2124   for(i=1;i<nr_class;i++)
2125     start[i] = start[i-1]+count[i-1];
2126 
2127   *nr_class_ret = nr_class;
2128   *label_ret = label;
2129   *start_ret = start;
2130   *count_ret = count;
2131   free(data_label);
2132 }
2133 
2134 //
2135 // Remove zero weighed data as libsvm and some liblinear solvers require C > 0.
2136 //
remove_zero_weight(svm_problem * newprob,const svm_problem * prob)2137 static void remove_zero_weight(svm_problem *newprob, const svm_problem *prob)
2138 {
2139   int i;
2140   int l = 0;
2141   for(i=0;i<prob->l;i++)
2142     if(prob->W[i] > 0) l++;
2143   *newprob = *prob;
2144   newprob->l = l;
2145   newprob->x = Malloc(svm_node*,l);
2146   newprob->y = Malloc(double,l);
2147   newprob->W = Malloc(double,l);
2148 
2149   int j = 0;
2150   for(i=0;i<prob->l;i++)
2151     if(prob->W[i] > 0)
2152     {
2153       newprob->x[j] = prob->x[i];
2154       newprob->y[j] = prob->y[i];
2155       newprob->W[j] = prob->W[i];
2156       j++;
2157     }
2158 }
2159 
2160 //
2161 // Interface functions
2162 //
svm_train(const svm_problem * prob,const svm_parameter * param)2163 svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
2164 {
2165   svm_problem newprob;
2166   remove_zero_weight(&newprob, prob);
2167   prob = &newprob;
2168 
2169   svm_model *model = Malloc(svm_model,1);
2170   model->param = *param;
2171   model->free_sv = 0;	// XXX
2172 
2173   if(param->svm_type == ONE_CLASS ||
2174      param->svm_type == EPSILON_SVR ||
2175      param->svm_type == NU_SVR)
2176   {
2177     // regression or one-class-svm
2178     model->nr_class = 2;
2179     model->label = NULL;
2180     model->nSV = NULL;
2181     model->probA = NULL; model->probB = NULL;
2182     model->sv_coef = Malloc(double *,1);
2183 
2184     if(param->probability &&
2185        (param->svm_type == EPSILON_SVR ||
2186         param->svm_type == NU_SVR))
2187     {
2188       model->probA = Malloc(double,1);
2189       model->probA[0] = svm_svr_probability(prob,param);
2190     }
2191 
2192     decision_function f = svm_train_one(prob,param,0,0);
2193     model->rho = Malloc(double,1);
2194     model->rho[0] = f.rho;
2195 
2196     int nSV = 0;
2197     int i;
2198     for(i=0;i<prob->l;i++)
2199       if(fabs(f.alpha[i]) > 0) ++nSV;
2200     model->l = nSV;
2201     model->SV = Malloc(svm_node *,nSV);
2202     model->sv_coef[0] = Malloc(double,nSV);
2203     model->sv_indices = Malloc(int,nSV);
2204     int j = 0;
2205     for(i=0;i<prob->l;i++)
2206       if(fabs(f.alpha[i]) > 0)
2207       {
2208         model->SV[j] = prob->x[i];
2209         model->sv_coef[0][j] = f.alpha[i];
2210         model->sv_indices[j] = i+1;
2211         ++j;
2212       }
2213 
2214     free(f.alpha);
2215   }
2216   else
2217   {
2218     // classification
2219     int l = prob->l;
2220     int nr_class;
2221     int *label = NULL;
2222     int *start = NULL;
2223     int *count = NULL;
2224     int *perm = Malloc(int,l);
2225 
2226     // group training data of the same class
2227     svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
2228     if(nr_class == 1)
2229       info("WARNING: training data in only one class. See README for details.\n");
2230 
2231     svm_node **x = Malloc(svm_node *,l);
2232     double *W;
2233     W = Malloc(double,l);
2234 
2235     int i;
2236     for(i=0;i<l;i++)
2237     {
2238       x[i] = prob->x[perm[i]];
2239       W[i] = prob->W[perm[i]];
2240     }
2241 
2242     // calculate weighted C
2243 
2244     double *weighted_C = Malloc(double, nr_class);
2245     for(i=0;i<nr_class;i++)
2246       weighted_C[i] = param->C;
2247     for(i=0;i<param->nr_weight;i++)
2248     {
2249       int j;
2250       for(j=0;j<nr_class;j++)
2251         if(param->weight_label[i] == label[j])
2252           break;
2253       if(j == nr_class)
2254         fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
2255       else
2256         weighted_C[j] *= param->weight[i];
2257     }
2258 
2259     // train k*(k-1)/2 models
2260 
2261     bool *nonzero = Malloc(bool,l);
2262     for(i=0;i<l;i++)
2263       nonzero[i] = false;
2264     decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
2265 
2266     double *probA=NULL,*probB=NULL;
2267     if (param->probability)
2268     {
2269       probA=Malloc(double,nr_class*(nr_class-1)/2);
2270       probB=Malloc(double,nr_class*(nr_class-1)/2);
2271     }
2272 
2273     int p = 0;
2274     for(i=0;i<nr_class;i++)
2275       for(int j=i+1;j<nr_class;j++)
2276       {
2277         svm_problem sub_prob;
2278         int si = start[i], sj = start[j];
2279         int ci = count[i], cj = count[j];
2280         sub_prob.l = ci+cj;
2281         sub_prob.x = Malloc(svm_node *,sub_prob.l);
2282         sub_prob.y = Malloc(double,sub_prob.l);
2283         sub_prob.W = Malloc(double,sub_prob.l);
2284         int k;
2285         for(k=0;k<ci;k++)
2286         {
2287           sub_prob.x[k] = x[si+k];
2288           sub_prob.y[k] = +1;
2289           sub_prob.W[k] = W[si+k];
2290         }
2291         for(k=0;k<cj;k++)
2292         {
2293           sub_prob.x[ci+k] = x[sj+k];
2294           sub_prob.y[ci+k] = -1;
2295           sub_prob.W[ci+k] = W[sj+k];
2296         }
2297 
2298         if(param->probability)
2299           svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
2300 
2301         f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
2302         for(k=0;k<ci;k++)
2303           if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
2304             nonzero[si+k] = true;
2305         for(k=0;k<cj;k++)
2306           if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
2307             nonzero[sj+k] = true;
2308         free(sub_prob.x);
2309         free(sub_prob.y);
2310         free(sub_prob.W);
2311         ++p;
2312       }
2313 
2314     // build output
2315 
2316     model->nr_class = nr_class;
2317 
2318     model->label = Malloc(int,nr_class);
2319     for(i=0;i<nr_class;i++)
2320       model->label[i] = label[i];
2321 
2322     model->rho = Malloc(double,nr_class*(nr_class-1)/2);
2323     for(i=0;i<nr_class*(nr_class-1)/2;i++)
2324       model->rho[i] = f[i].rho;
2325 
2326     if(param->probability)
2327     {
2328       model->probA = Malloc(double,nr_class*(nr_class-1)/2);
2329       model->probB = Malloc(double,nr_class*(nr_class-1)/2);
2330       for(i=0;i<nr_class*(nr_class-1)/2;i++)
2331       {
2332         model->probA[i] = probA[i];
2333         model->probB[i] = probB[i];
2334       }
2335     }
2336     else
2337     {
2338       model->probA=NULL;
2339       model->probB=NULL;
2340     }
2341 
2342     int total_sv = 0;
2343     int *nz_count = Malloc(int,nr_class);
2344     model->nSV = Malloc(int,nr_class);
2345     for(i=0;i<nr_class;i++)
2346     {
2347       int nSV = 0;
2348       for(int j=0;j<count[i];j++)
2349         if(nonzero[start[i]+j])
2350         {
2351           ++nSV;
2352           ++total_sv;
2353         }
2354       model->nSV[i] = nSV;
2355       nz_count[i] = nSV;
2356     }
2357 
2358     info("Total nSV = %d\n",total_sv);
2359 
2360     model->l = total_sv;
2361     model->SV = Malloc(svm_node *,total_sv);
2362     model->sv_indices = Malloc(int,total_sv);
2363     p = 0;
2364     for(i=0;i<l;i++)
2365       if(nonzero[i])
2366       {
2367         model->SV[p] = x[i];
2368         model->sv_indices[p++] = perm[i] + 1;
2369       }
2370 
2371     int *nz_start = Malloc(int,nr_class);
2372     nz_start[0] = 0;
2373     for(i=1;i<nr_class;i++)
2374       nz_start[i] = nz_start[i-1]+nz_count[i-1];
2375 
2376     model->sv_coef = Malloc(double *,nr_class-1);
2377     for(i=0;i<nr_class-1;i++)
2378       model->sv_coef[i] = Malloc(double,total_sv);
2379 
2380     p = 0;
2381     for(i=0;i<nr_class;i++)
2382       for(int j=i+1;j<nr_class;j++)
2383       {
2384         // classifier (i,j): coefficients with
2385         // i are in sv_coef[j-1][nz_start[i]...],
2386         // j are in sv_coef[i][nz_start[j]...]
2387 
2388         int si = start[i];
2389         int sj = start[j];
2390         int ci = count[i];
2391         int cj = count[j];
2392 
2393         int q = nz_start[i];
2394         int k;
2395         for(k=0;k<ci;k++)
2396           if(nonzero[si+k])
2397             model->sv_coef[j-1][q++] = f[p].alpha[k];
2398         q = nz_start[j];
2399         for(k=0;k<cj;k++)
2400           if(nonzero[sj+k])
2401             model->sv_coef[i][q++] = f[p].alpha[ci+k];
2402         ++p;
2403       }
2404 
2405     free(label);
2406     free(probA);
2407     free(probB);
2408     free(count);
2409     free(perm);
2410     free(start);
2411     free(W);
2412     free(x);
2413     free(weighted_C);
2414     free(nonzero);
2415     for(i=0;i<nr_class*(nr_class-1)/2;i++)
2416       free(f[i].alpha);
2417     free(f);
2418     free(nz_count);
2419     free(nz_start);
2420   }
2421   free(newprob.x);
2422   free(newprob.y);
2423   free(newprob.W);
2424   return model;
2425 }
2426 
2427 // Stratified cross validation
svm_cross_validation(const svm_problem * prob,const svm_parameter * param,int nr_fold,double * target)2428 void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
2429 {
2430   int i;
2431   int *fold_start = Malloc(int,nr_fold+1);
2432   int l = prob->l;
2433   int *perm = Malloc(int,l);
2434   int nr_class;
2435 
2436   // stratified cv may not give leave-one-out rate
2437   // Each class to l folds -> some folds may have zero elements
2438   if((param->svm_type == C_SVC ||
2439       param->svm_type == NU_SVC) && nr_fold < l)
2440   {
2441     int *start = NULL;
2442     int *label = NULL;
2443     int *count = NULL;
2444     svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
2445 
2446     // random shuffle and then data grouped by fold using the array perm
2447     int *fold_count = Malloc(int,nr_fold);
2448     int c;
2449     int *index = Malloc(int,l);
2450     for(i=0;i<l;i++)
2451       index[i]=perm[i];
2452     for (c=0; c<nr_class; c++)
2453       for(i=0;i<count[c];i++)
2454       {
2455         int j = i+rand()%(count[c]-i);
2456         swap(index[start[c]+j],index[start[c]+i]);
2457       }
2458     for(i=0;i<nr_fold;i++)
2459     {
2460       fold_count[i] = 0;
2461       for (c=0; c<nr_class;c++)
2462         fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
2463     }
2464     fold_start[0]=0;
2465     for (i=1;i<=nr_fold;i++)
2466       fold_start[i] = fold_start[i-1]+fold_count[i-1];
2467     for (c=0; c<nr_class;c++)
2468       for(i=0;i<nr_fold;i++)
2469       {
2470         int begin = start[c]+i*count[c]/nr_fold;
2471         int end = start[c]+(i+1)*count[c]/nr_fold;
2472         for(int j=begin;j<end;j++)
2473         {
2474           perm[fold_start[i]] = index[j];
2475           fold_start[i]++;
2476         }
2477       }
2478     fold_start[0]=0;
2479     for (i=1;i<=nr_fold;i++)
2480       fold_start[i] = fold_start[i-1]+fold_count[i-1];
2481     free(start);
2482     free(label);
2483     free(count);
2484     free(index);
2485     free(fold_count);
2486   }
2487   else
2488   {
2489     for(i=0;i<l;i++) perm[i]=i;
2490     for(i=0;i<l;i++)
2491     {
2492       int j = i+rand()%(l-i);
2493       swap(perm[i],perm[j]);
2494     }
2495     for(i=0;i<=nr_fold;i++)
2496       fold_start[i]=i*l/nr_fold;
2497   }
2498 
2499   for(i=0;i<nr_fold;i++)
2500   {
2501     int begin = fold_start[i];
2502     int end = fold_start[i+1];
2503     int j,k;
2504     struct svm_problem subprob;
2505 
2506     subprob.l = l-(end-begin);
2507     subprob.x = Malloc(struct svm_node*,subprob.l);
2508     subprob.y = Malloc(double,subprob.l);
2509 
2510     subprob.W = Malloc(double,subprob.l);
2511     k=0;
2512     for(j=0;j<begin;j++)
2513     {
2514       subprob.x[k] = prob->x[perm[j]];
2515       subprob.y[k] = prob->y[perm[j]];
2516       subprob.W[k] = prob->W[perm[j]];
2517       ++k;
2518     }
2519     for(j=end;j<l;j++)
2520     {
2521       subprob.x[k] = prob->x[perm[j]];
2522       subprob.y[k] = prob->y[perm[j]];
2523       subprob.W[k] = prob->W[perm[j]];
2524       ++k;
2525     }
2526     struct svm_model *submodel = svm_train(&subprob,param);
2527     if(param->probability &&
2528        (param->svm_type == C_SVC || param->svm_type == NU_SVC))
2529     {
2530       double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
2531       for(j=begin;j<end;j++)
2532         target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
2533       free(prob_estimates);
2534     }
2535     else
2536       for(j=begin;j<end;j++)
2537         target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
2538     svm_free_and_destroy_model(&submodel);
2539     free(subprob.x);
2540     free(subprob.y);
2541     free(subprob.W);
2542   }
2543   free(fold_start);
2544   free(perm);
2545 }
2546 
2547 
svm_get_svm_type(const svm_model * model)2548 int svm_get_svm_type(const svm_model *model)
2549 {
2550   return model->param.svm_type;
2551 }
2552 
svm_get_nr_class(const svm_model * model)2553 int svm_get_nr_class(const svm_model *model)
2554 {
2555   return model->nr_class;
2556 }
2557 
svm_get_labels(const svm_model * model,int * label)2558 void svm_get_labels(const svm_model *model, int* label)
2559 {
2560   if (model->label != NULL)
2561     for(int i=0;i<model->nr_class;i++)
2562       label[i] = model->label[i];
2563 }
2564 
svm_get_sv_indices(const svm_model * model,int * indices)2565 void svm_get_sv_indices(const svm_model *model, int* indices)
2566 {
2567   if (model->sv_indices != NULL)
2568     for(int i=0;i<model->l;i++)
2569       indices[i] = model->sv_indices[i];
2570 }
2571 
svm_get_nr_sv(const svm_model * model)2572 int svm_get_nr_sv(const svm_model *model)
2573 {
2574   return model->l;
2575 }
2576 
svm_get_svr_probability(const svm_model * model)2577 double svm_get_svr_probability(const svm_model *model)
2578 {
2579   if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
2580       model->probA!=NULL)
2581     return model->probA[0];
2582   else
2583   {
2584     fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
2585     return 0;
2586   }
2587 }
2588 
svm_hyper_w_normsqr_twoclass(const struct svm_model * model)2589 double svm_hyper_w_normsqr_twoclass(const struct svm_model* model)
2590 {
2591   assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC);
2592   int i, j;
2593   // int nr_class = model->nr_class;
2594   // assert(nr_class == 2);
2595   int l = model->l;
2596 
2597   double sum = 0;
2598   double *coef = model->sv_coef[0];
2599 
2600   for(i=0;i<l;++i)
2601     for(j=0;j<l;++j)
2602     {
2603       double kv = Kernel::k_function(model->SV[i],model->SV[j],model->param);
2604       sum += kv * coef[i] * coef[j];
2605     }
2606 
2607   return sum;
2608 }
2609 
svm_predict_values_twoclass(const struct svm_model * model,const struct svm_node * x)2610 double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x)
2611 {
2612 
2613   assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC);
2614   int i;
2615   // int nr_class = model->nr_class;
2616   // assert(nr_class == 2);
2617   int l = model->l;
2618 
2619   double *kvalue = Malloc(double,l);
2620   for(i=0;i<l;i++)
2621     kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
2622 
2623 
2624   double sum = 0;
2625   double *coef = model->sv_coef[0];
2626   for(i=0;i<l;++i)
2627     sum += coef[i] * kvalue[i];
2628   sum -= model->rho[0];
2629 
2630   free(kvalue);
2631 
2632   return sum * model->label[0];
2633 }
2634 
svm_predict_values(const svm_model * model,const svm_node * x,double * dec_values)2635 double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
2636 {
2637   int i;
2638   if(model->param.svm_type == ONE_CLASS ||
2639      model->param.svm_type == EPSILON_SVR ||
2640      model->param.svm_type == NU_SVR)
2641   {
2642     double *sv_coef = model->sv_coef[0];
2643     double sum = 0;
2644     for(i=0;i<model->l;i++)
2645       sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
2646     sum -= model->rho[0];
2647     *dec_values = sum;
2648 
2649     if(model->param.svm_type == ONE_CLASS)
2650       return (sum>0)?1:-1;
2651     else
2652       return sum;
2653   }
2654   else
2655   {
2656     int nr_class = model->nr_class;
2657     int l = model->l;
2658 
2659     double *kvalue = Malloc(double,l);
2660     for(i=0;i<l;i++)
2661       kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
2662 
2663     int *start = Malloc(int,nr_class);
2664     start[0] = 0;
2665     for(i=1;i<nr_class;i++)
2666       start[i] = start[i-1]+model->nSV[i-1];
2667 
2668     int *vote = Malloc(int,nr_class);
2669     for(i=0;i<nr_class;i++)
2670       vote[i] = 0;
2671 
2672     int p=0;
2673     for(i=0;i<nr_class;i++)
2674       for(int j=i+1;j<nr_class;j++)
2675       {
2676         double sum = 0;
2677         int si = start[i];
2678         int sj = start[j];
2679         int ci = model->nSV[i];
2680         int cj = model->nSV[j];
2681 
2682         int k;
2683         double *coef1 = model->sv_coef[j-1];
2684         double *coef2 = model->sv_coef[i];
2685         for(k=0;k<ci;k++)
2686           sum += coef1[si+k] * kvalue[si+k];
2687         for(k=0;k<cj;k++)
2688           sum += coef2[sj+k] * kvalue[sj+k];
2689         sum -= model->rho[p];
2690         dec_values[p] = sum;
2691 
2692         if(dec_values[p] > 0)
2693           ++vote[i];
2694         else
2695           ++vote[j];
2696         p++;
2697       }
2698 
2699     int vote_max_idx = 0;
2700     for(i=1;i<nr_class;i++)
2701       if(vote[i] > vote[vote_max_idx])
2702         vote_max_idx = i;
2703 
2704     free(kvalue);
2705     free(start);
2706     free(vote);
2707     return model->label[vote_max_idx];
2708   }
2709 }
2710 
svm_predict(const svm_model * model,const svm_node * x)2711 double svm_predict(const svm_model *model, const svm_node *x)
2712 {
2713   int nr_class = model->nr_class;
2714   double *dec_values;
2715   if(model->param.svm_type == ONE_CLASS ||
2716      model->param.svm_type == EPSILON_SVR ||
2717      model->param.svm_type == NU_SVR)
2718     dec_values = Malloc(double, 1);
2719   else
2720     dec_values = Malloc(double, nr_class*(nr_class-1)/2);
2721   double pred_result = svm_predict_values(model, x, dec_values);
2722   free(dec_values);
2723   return pred_result;
2724 }
2725 
svm_predict_probability(const svm_model * model,const svm_node * x,double * prob_estimates)2726 double svm_predict_probability(
2727                                const svm_model *model, const svm_node *x, double *prob_estimates)
2728 {
2729   if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
2730       model->probA!=NULL && model->probB!=NULL)
2731   {
2732     int i;
2733     int nr_class = model->nr_class;
2734     double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
2735     svm_predict_values(model, x, dec_values);
2736 
2737     double min_prob=1e-7;
2738     double **pairwise_prob=Malloc(double *,nr_class);
2739     for(i=0;i<nr_class;i++)
2740       pairwise_prob[i]=Malloc(double,nr_class);
2741     int k=0;
2742     for(i=0;i<nr_class;i++)
2743       for(int j=i+1;j<nr_class;j++)
2744       {
2745         pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
2746         pairwise_prob[j][i]=1-pairwise_prob[i][j];
2747         k++;
2748       }
2749     multiclass_probability(nr_class,pairwise_prob,prob_estimates);
2750 
2751     int prob_max_idx = 0;
2752     for(i=1;i<nr_class;i++)
2753       if(prob_estimates[i] > prob_estimates[prob_max_idx])
2754         prob_max_idx = i;
2755     for(i=0;i<nr_class;i++)
2756       free(pairwise_prob[i]);
2757     free(dec_values);
2758     free(pairwise_prob);
2759     return model->label[prob_max_idx];
2760   }
2761   else
2762     return svm_predict(model, x);
2763 }
2764 
2765 static const char *svm_type_table[] =
2766   {
2767 	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
2768   };
2769 
2770 static const char *kernel_type_table[]=
2771   {
2772 	"linear","polynomial","rbf","sigmoid","precomputed",NULL
2773   };
2774 
svm_save_model(const char * model_file_name,const svm_model * model)2775 int svm_save_model(const char *model_file_name, const svm_model *model)
2776 {
2777   FILE *fp = fopen(model_file_name,"w");
2778   if(fp==NULL) return -1;
2779 
2780   char *old_locale = strdup(setlocale(LC_ALL, NULL));
2781   setlocale(LC_ALL, "C");
2782 
2783   const svm_parameter& param = model->param;
2784 
2785   fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
2786   fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
2787 
2788   if(param.kernel_type == POLY)
2789     fprintf(fp,"degree %d\n", param.degree);
2790 
2791   if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
2792     fprintf(fp,"gamma %g\n", param.gamma);
2793 
2794   if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
2795     fprintf(fp,"coef0 %g\n", param.coef0);
2796 
2797   int nr_class = model->nr_class;
2798   int l = model->l;
2799   fprintf(fp, "nr_class %d\n", nr_class);
2800   fprintf(fp, "total_sv %d\n",l);
2801 
2802   {
2803     fprintf(fp, "rho");
2804     for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2805       fprintf(fp," %g",model->rho[i]);
2806     fprintf(fp, "\n");
2807   }
2808 
2809   if(model->label)
2810   {
2811     fprintf(fp, "label");
2812     for(int i=0;i<nr_class;i++)
2813       fprintf(fp," %d",model->label[i]);
2814     fprintf(fp, "\n");
2815   }
2816 
2817   if(model->probA) // regression has probA only
2818   {
2819     fprintf(fp, "probA");
2820     for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2821       fprintf(fp," %g",model->probA[i]);
2822     fprintf(fp, "\n");
2823   }
2824   if(model->probB)
2825   {
2826     fprintf(fp, "probB");
2827     for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2828       fprintf(fp," %g",model->probB[i]);
2829     fprintf(fp, "\n");
2830   }
2831 
2832   if(model->nSV)
2833   {
2834     fprintf(fp, "nr_sv");
2835     for(int i=0;i<nr_class;i++)
2836       fprintf(fp," %d",model->nSV[i]);
2837     fprintf(fp, "\n");
2838   }
2839 
2840   fprintf(fp, "SV\n");
2841   const double * const *sv_coef = model->sv_coef;
2842   const svm_node * const *SV = model->SV;
2843 
2844   for(int i=0;i<l;i++)
2845   {
2846     for(int j=0;j<nr_class-1;j++)
2847       fprintf(fp, "%.16g ",sv_coef[j][i]);
2848 
2849     const svm_node *p = SV[i];
2850 
2851     if(param.kernel_type == PRECOMPUTED)
2852       fprintf(fp,"0:%d ",(int)(p->value));
2853     else
2854       while(p->index != -1)
2855       {
2856         fprintf(fp,"%d:%.8g ",p->index,p->value);
2857         p++;
2858       }
2859     fprintf(fp, "\n");
2860   }
2861 
2862   setlocale(LC_ALL, old_locale);
2863   free(old_locale);
2864 
2865   if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
2866   else return 0;
2867 }
2868 
2869 static char *line = NULL;
2870 static int max_line_len;
2871 
readline(FILE * input)2872 static char* readline(FILE *input)
2873 {
2874   int len;
2875 
2876   if(fgets(line,max_line_len,input) == NULL)
2877     return NULL;
2878 
2879   while(strrchr(line,'\n') == NULL)
2880   {
2881     max_line_len *= 2;
2882     line = (char *) realloc(line,max_line_len);
2883     len = (int) strlen(line);
2884     if(fgets(line+len,max_line_len-len,input) == NULL)
2885       break;
2886   }
2887   return line;
2888 }
2889 
svm_load_model(const char * model_file_name)2890 svm_model *svm_load_model(const char *model_file_name)
2891 {
2892   FILE *fp = fopen(model_file_name,"rb");
2893   if(fp==NULL) return NULL;
2894 
2895   char *old_locale = strdup(setlocale(LC_ALL, NULL));
2896   setlocale(LC_ALL, "C");
2897 
2898   // read parameters
2899 
2900   svm_model *model = Malloc(svm_model,1);
2901   svm_parameter& param = model->param;
2902   model->rho = NULL;
2903   model->probA = NULL;
2904   model->probB = NULL;
2905   model->label = NULL;
2906   model->nSV = NULL;
2907 
2908   char cmd[81];
2909   while(1)
2910   {
2911     fscanf(fp,"%80s",cmd);
2912 
2913     if(strcmp(cmd,"svm_type")==0)
2914     {
2915       fscanf(fp,"%80s",cmd);
2916       int i;
2917       for(i=0;svm_type_table[i];i++)
2918       {
2919         if(strcmp(svm_type_table[i],cmd)==0)
2920         {
2921           param.svm_type=i;
2922           break;
2923         }
2924       }
2925       if(svm_type_table[i] == NULL)
2926       {
2927         fprintf(stderr,"unknown svm type.\n");
2928 
2929         setlocale(LC_ALL, old_locale);
2930         free(old_locale);
2931         free(model->rho);
2932         free(model->label);
2933         free(model->nSV);
2934         free(model);
2935         return NULL;
2936       }
2937     }
2938     else if(strcmp(cmd,"kernel_type")==0)
2939     {
2940       fscanf(fp,"%80s",cmd);
2941       int i;
2942       for(i=0;kernel_type_table[i];i++)
2943       {
2944         if(strcmp(kernel_type_table[i],cmd)==0)
2945         {
2946           param.kernel_type=i;
2947           break;
2948         }
2949       }
2950       if(kernel_type_table[i] == NULL)
2951       {
2952         fprintf(stderr,"unknown kernel function.\n");
2953 
2954         setlocale(LC_ALL, old_locale);
2955         free(old_locale);
2956         free(model->rho);
2957         free(model->label);
2958         free(model->nSV);
2959         free(model);
2960         return NULL;
2961       }
2962     }
2963     else if(strcmp(cmd,"degree")==0)
2964       fscanf(fp,"%d",&param.degree);
2965     else if(strcmp(cmd,"gamma")==0)
2966       fscanf(fp,"%lf",&param.gamma);
2967     else if(strcmp(cmd,"coef0")==0)
2968       fscanf(fp,"%lf",&param.coef0);
2969     else if(strcmp(cmd,"nr_class")==0)
2970       fscanf(fp,"%d",&model->nr_class);
2971     else if(strcmp(cmd,"total_sv")==0)
2972       fscanf(fp,"%d",&model->l);
2973     else if(strcmp(cmd,"rho")==0)
2974     {
2975       int n = model->nr_class * (model->nr_class-1)/2;
2976       model->rho = Malloc(double,n);
2977       for(int i=0;i<n;i++)
2978         fscanf(fp,"%lf",&model->rho[i]);
2979     }
2980     else if(strcmp(cmd,"label")==0)
2981     {
2982       int n = model->nr_class;
2983       model->label = Malloc(int,n);
2984       for(int i=0;i<n;i++)
2985         fscanf(fp,"%d",&model->label[i]);
2986     }
2987     else if(strcmp(cmd,"probA")==0)
2988     {
2989       int n = model->nr_class * (model->nr_class-1)/2;
2990       model->probA = Malloc(double,n);
2991       for(int i=0;i<n;i++)
2992         fscanf(fp,"%lf",&model->probA[i]);
2993     }
2994     else if(strcmp(cmd,"probB")==0)
2995     {
2996       int n = model->nr_class * (model->nr_class-1)/2;
2997       model->probB = Malloc(double,n);
2998       for(int i=0;i<n;i++)
2999         fscanf(fp,"%lf",&model->probB[i]);
3000     }
3001     else if(strcmp(cmd,"nr_sv")==0)
3002     {
3003       int n = model->nr_class;
3004       model->nSV = Malloc(int,n);
3005       for(int i=0;i<n;i++)
3006         fscanf(fp,"%d",&model->nSV[i]);
3007     }
3008     else if(strcmp(cmd,"SV")==0)
3009     {
3010       while(1)
3011       {
3012         int c = getc(fp);
3013         if(c==EOF || c=='\n') break;
3014       }
3015       break;
3016     }
3017     else
3018     {
3019       fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
3020 
3021       setlocale(LC_ALL, old_locale);
3022       free(old_locale);
3023       free(model->rho);
3024       free(model->label);
3025       free(model->nSV);
3026       free(model);
3027       return NULL;
3028     }
3029   }
3030 
3031   // read sv_coef and SV
3032 
3033   int elements = 0;
3034   long pos = ftell(fp);
3035 
3036   max_line_len = 1024;
3037   line = Malloc(char,max_line_len);
3038   char *p,*endptr,*idx,*val;
3039 
3040   while(readline(fp)!=NULL)
3041   {
3042     p = strtok(line,":");
3043     while(1)
3044     {
3045       p = strtok(NULL,":");
3046       if(p == NULL)
3047         break;
3048       ++elements;
3049     }
3050   }
3051   elements += model->l;
3052 
3053   fseek(fp,pos,SEEK_SET);
3054 
3055   int m = model->nr_class - 1;
3056   int l = model->l;
3057   model->sv_coef = Malloc(double *,m);
3058   int i;
3059   for(i=0;i<m;i++)
3060     model->sv_coef[i] = Malloc(double,l);
3061   model->SV = Malloc(svm_node*,l);
3062   svm_node *x_space = NULL;
3063   if(l>0) x_space = Malloc(svm_node,elements);
3064 
3065   int j=0;
3066   for(i=0;i<l;i++)
3067   {
3068     readline(fp);
3069     model->SV[i] = &x_space[j];
3070 
3071     p = strtok(line, " \t");
3072     model->sv_coef[0][i] = strtod(p,&endptr);
3073     for(int k=1;k<m;k++)
3074     {
3075       p = strtok(NULL, " \t");
3076       model->sv_coef[k][i] = strtod(p,&endptr);
3077     }
3078 
3079     while(1)
3080     {
3081       idx = strtok(NULL, ":");
3082       val = strtok(NULL, " \t");
3083 
3084       if(val == NULL)
3085         break;
3086       x_space[j].index = (int) strtol(idx,&endptr,10);
3087       x_space[j].value = strtod(val,&endptr);
3088 
3089       ++j;
3090     }
3091     x_space[j++].index = -1;
3092   }
3093   free(line);
3094 
3095   setlocale(LC_ALL, old_locale);
3096   free(old_locale);
3097 
3098   if (ferror(fp) != 0 || fclose(fp) != 0)
3099     return NULL;
3100 
3101   model->free_sv = 1;	// XXX
3102   return model;
3103 }
3104 
svm_free_model_content(svm_model * model_ptr)3105 void svm_free_model_content(svm_model* model_ptr)
3106 {
3107   if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
3108     free((void *)(model_ptr->SV[0]));
3109   if(model_ptr->sv_coef)
3110   {
3111     for(int i=0;i<model_ptr->nr_class-1;i++)
3112       free(model_ptr->sv_coef[i]);
3113   }
3114 
3115   free(model_ptr->SV);
3116   model_ptr->SV = NULL;
3117 
3118   free(model_ptr->sv_coef);
3119   model_ptr->sv_coef = NULL;
3120 
3121   free(model_ptr->rho);
3122   model_ptr->rho = NULL;
3123 
3124   free(model_ptr->label);
3125   model_ptr->label= NULL;
3126 
3127   free(model_ptr->probA);
3128   model_ptr->probA = NULL;
3129 
3130   free(model_ptr->probB);
3131   model_ptr->probB= NULL;
3132 
3133   free(model_ptr->nSV);
3134   model_ptr->nSV = NULL;
3135 }
3136 
svm_free_and_destroy_model(svm_model ** model_ptr_ptr)3137 void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
3138 {
3139   if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
3140   {
3141     svm_free_model_content(*model_ptr_ptr);
3142     free(*model_ptr_ptr);
3143     *model_ptr_ptr = NULL;
3144   }
3145 }
3146 
svm_destroy_param(svm_parameter * param)3147 void svm_destroy_param(svm_parameter* param)
3148 {
3149   free(param->weight_label);
3150   free(param->weight);
3151 }
3152 
svm_check_parameter(const svm_problem * prob,const svm_parameter * param)3153 const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
3154 {
3155   // svm_type
3156 
3157   int svm_type = param->svm_type;
3158   if(svm_type != C_SVC &&
3159      svm_type != NU_SVC &&
3160      svm_type != ONE_CLASS &&
3161      svm_type != EPSILON_SVR &&
3162      svm_type != NU_SVR)
3163     return "unknown svm type";
3164 
3165   // kernel_type, degree
3166 
3167   int kernel_type = param->kernel_type;
3168   if(kernel_type != LINEAR &&
3169      kernel_type != POLY &&
3170      kernel_type != RBF &&
3171      kernel_type != SIGMOID &&
3172      kernel_type != PRECOMPUTED)
3173     return "unknown kernel type";
3174 
3175   if(param->gamma < 0)
3176     return "gamma < 0";
3177 
3178   if(param->degree < 0)
3179     return "degree of polynomial kernel < 0";
3180 
3181   // cache_size,eps,C,nu,p,shrinking
3182 
3183   if(param->cache_size <= 0)
3184     return "cache_size <= 0";
3185 
3186   if(param->eps <= 0)
3187     return "eps <= 0";
3188 
3189   if(svm_type == C_SVC ||
3190      svm_type == EPSILON_SVR ||
3191      svm_type == NU_SVR)
3192     if(param->C <= 0)
3193       return "C <= 0";
3194 
3195   if(svm_type == NU_SVC ||
3196      svm_type == ONE_CLASS ||
3197      svm_type == NU_SVR)
3198     if(param->nu <= 0 || param->nu > 1)
3199       return "nu <= 0 or nu > 1";
3200 
3201   if(svm_type == EPSILON_SVR)
3202     if(param->p < 0)
3203       return "p < 0";
3204 
3205   if(param->shrinking != 0 &&
3206      param->shrinking != 1)
3207     return "shrinking != 0 and shrinking != 1";
3208 
3209   if(param->probability != 0 &&
3210      param->probability != 1)
3211     return "probability != 0 and probability != 1";
3212 
3213   if(param->probability == 1 &&
3214      svm_type == ONE_CLASS)
3215     return "one-class SVM probability output not supported yet";
3216 
3217 
3218   // check whether nu-svc is feasible
3219 
3220   if(svm_type == NU_SVC)
3221   {
3222     int l = prob->l;
3223     int max_nr_class = 16;
3224     int nr_class = 0;
3225     int *label = Malloc(int,max_nr_class);
3226     double *count = Malloc(double,max_nr_class);
3227 
3228     int i;
3229     for(i=0;i<l;i++)
3230     {
3231       int this_label = (int)prob->y[i];
3232       int j;
3233       for(j=0;j<nr_class;j++)
3234         if(this_label == label[j])
3235         {
3236           count[j] += prob->W[i];
3237           break;
3238         }
3239       if(j == nr_class)
3240       {
3241         if(nr_class == max_nr_class)
3242         {
3243           max_nr_class *= 2;
3244           label = (int *)realloc(label,max_nr_class*sizeof(int));
3245           count = (double *)realloc(count,max_nr_class*sizeof(double));
3246         }
3247         label[nr_class] = this_label;
3248         count[nr_class] = prob->W[i];
3249         ++nr_class;
3250       }
3251     }
3252 
3253     for(i=0;i<nr_class;i++)
3254     {
3255       double n1 = count[i];
3256       for(int j=i+1;j<nr_class;j++)
3257       {
3258         double n2 = count[j];
3259         if(param->nu*(n1+n2)/2 > min(n1,n2))
3260         {
3261           free(label);
3262           free(count);
3263           return "specified nu is infeasible";
3264         }
3265       }
3266     }
3267     free(label);
3268     free(count);
3269   }
3270 
3271   return NULL;
3272 }
3273 
svm_check_probability_model(const svm_model * model)3274 int svm_check_probability_model(const svm_model *model)
3275 {
3276   return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
3277           model->probA!=NULL && model->probB!=NULL) ||
3278     ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
3279      model->probA!=NULL);
3280 }
3281 
svm_set_print_string_function(void (* print_func)(const char *))3282 void svm_set_print_string_function(void (*print_func)(const char *))
3283 {
3284   if(print_func == NULL)
3285     svm_print_string = &print_string_stdout;
3286   else
3287     svm_print_string = print_func;
3288 }
3289