1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:56 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
29 
30 /*
31  * This function contains 42 FP additions, 22 FP multiplications,
32  * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
33  * 36 stack variables, 4 constants, and 25 memory accesses
34  */
35 #include "dft/simd/n2b.h"
36 
n2bv_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
41      DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
42      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
43      {
44 	  INT i;
45 	  const R *xi;
46 	  R *xo;
47 	  xi = ii;
48 	  xo = io;
49 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
50 	       V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2;
51 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
52 	       T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
53 	       T3 = VSUB(T1, T2);
54 	       Tr = VADD(T1, T2);
55 	       {
56 		    V T6, Ts, Tg, Tw, T9, Tt, Td, Tv;
57 		    {
58 			 V T4, T5, Te, Tf;
59 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
60 			 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
61 			 T6 = VSUB(T4, T5);
62 			 Ts = VADD(T4, T5);
63 			 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
64 			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
65 			 Tg = VSUB(Te, Tf);
66 			 Tw = VADD(Te, Tf);
67 		    }
68 		    {
69 			 V T7, T8, Tb, Tc;
70 			 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
71 			 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
72 			 T9 = VSUB(T7, T8);
73 			 Tt = VADD(T7, T8);
74 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
75 			 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
76 			 Td = VSUB(Tb, Tc);
77 			 Tv = VADD(Tb, Tc);
78 		    }
79 		    Tm = VSUB(T6, T9);
80 		    Tn = VSUB(Td, Tg);
81 		    TD = VSUB(Ts, Tt);
82 		    TC = VSUB(Tv, Tw);
83 		    Tu = VADD(Ts, Tt);
84 		    Tx = VADD(Tv, Tw);
85 		    Ty = VADD(Tu, Tx);
86 		    Ta = VADD(T6, T9);
87 		    Th = VADD(Td, Tg);
88 		    Ti = VADD(Ta, Th);
89 	       }
90 	       {
91 		    V TH, TI, TK, TL, TM;
92 		    TH = VADD(T3, Ti);
93 		    STM2(&(xo[10]), TH, ovs, &(xo[2]));
94 		    TI = VADD(Tr, Ty);
95 		    STM2(&(xo[0]), TI, ovs, &(xo[0]));
96 		    {
97 			 V To, Tq, Tl, Tp, Tj, Tk, TJ;
98 			 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
99 			 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
100 			 Tj = VFNMS(LDK(KP250000000), Ti, T3);
101 			 Tk = VSUB(Ta, Th);
102 			 Tl = VFMA(LDK(KP559016994), Tk, Tj);
103 			 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
104 			 TJ = VFMAI(To, Tl);
105 			 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
106 			 STN2(&(xo[0]), TI, TJ, ovs);
107 			 TK = VFNMSI(Tq, Tp);
108 			 STM2(&(xo[14]), TK, ovs, &(xo[2]));
109 			 TL = VFNMSI(To, Tl);
110 			 STM2(&(xo[18]), TL, ovs, &(xo[2]));
111 			 TM = VFMAI(Tq, Tp);
112 			 STM2(&(xo[6]), TM, ovs, &(xo[2]));
113 		    }
114 		    {
115 			 V TE, TG, TB, TF, Tz, TA;
116 			 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
117 			 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
118 			 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
119 			 TA = VSUB(Tu, Tx);
120 			 TB = VFNMS(LDK(KP559016994), TA, Tz);
121 			 TF = VFMA(LDK(KP559016994), TA, Tz);
122 			 {
123 			      V TN, TO, TP, TQ;
124 			      TN = VFNMSI(TE, TB);
125 			      STM2(&(xo[4]), TN, ovs, &(xo[0]));
126 			      STN2(&(xo[4]), TN, TM, ovs);
127 			      TO = VFMAI(TG, TF);
128 			      STM2(&(xo[12]), TO, ovs, &(xo[0]));
129 			      STN2(&(xo[12]), TO, TK, ovs);
130 			      TP = VFMAI(TE, TB);
131 			      STM2(&(xo[16]), TP, ovs, &(xo[0]));
132 			      STN2(&(xo[16]), TP, TL, ovs);
133 			      TQ = VFNMSI(TG, TF);
134 			      STM2(&(xo[8]), TQ, ovs, &(xo[0]));
135 			      STN2(&(xo[8]), TQ, TH, ovs);
136 			 }
137 		    }
138 	       }
139 	  }
140      }
141      VLEAVE();
142 }
143 
144 static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 2, 0, 0 };
145 
XSIMD(codelet_n2bv_10)146 void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc);
147 }
148 
149 #else
150 
151 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
152 
153 /*
154  * This function contains 42 FP additions, 12 FP multiplications,
155  * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
156  * 36 stack variables, 4 constants, and 25 memory accesses
157  */
158 #include "dft/simd/n2b.h"
159 
n2bv_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)160 static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
161 {
162      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
163      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
164      DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
165      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
166      {
167 	  INT i;
168 	  const R *xi;
169 	  R *xo;
170 	  xi = ii;
171 	  xo = io;
172 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
173 	       V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk;
174 	       Tj = LD(&(xi[0]), ivs, &(xi[0]));
175 	       Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
176 	       Tl = VSUB(Tj, Tk);
177 	       Ty = VADD(Tj, Tk);
178 	       {
179 		    V T3, Tr, Td, Tv, T6, Ts, Ta, Tu;
180 		    {
181 			 V T1, T2, Tb, Tc;
182 			 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
183 			 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
184 			 T3 = VSUB(T1, T2);
185 			 Tr = VADD(T1, T2);
186 			 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
187 			 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
188 			 Td = VSUB(Tb, Tc);
189 			 Tv = VADD(Tb, Tc);
190 		    }
191 		    {
192 			 V T4, T5, T8, T9;
193 			 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
194 			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
195 			 T6 = VSUB(T4, T5);
196 			 Ts = VADD(T4, T5);
197 			 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
198 			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
199 			 Ta = VSUB(T8, T9);
200 			 Tu = VADD(T8, T9);
201 		    }
202 		    T7 = VSUB(T3, T6);
203 		    Te = VSUB(Ta, Td);
204 		    Tw = VSUB(Tu, Tv);
205 		    Tt = VSUB(Tr, Ts);
206 		    Tz = VADD(Tr, Ts);
207 		    TA = VADD(Tu, Tv);
208 		    TB = VADD(Tz, TA);
209 		    Tg = VADD(T3, T6);
210 		    Th = VADD(Ta, Td);
211 		    Tm = VADD(Tg, Th);
212 	       }
213 	       {
214 		    V TH, TI, TK, TL, TM;
215 		    TH = VADD(Tl, Tm);
216 		    STM2(&(xo[10]), TH, ovs, &(xo[2]));
217 		    TI = VADD(Ty, TB);
218 		    STM2(&(xo[0]), TI, ovs, &(xo[0]));
219 		    {
220 			 V Tf, Tq, To, Tp, Ti, Tn, TJ;
221 			 Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te)));
222 			 Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7)));
223 			 Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
224 			 Tn = VFNMS(LDK(KP250000000), Tm, Tl);
225 			 To = VADD(Ti, Tn);
226 			 Tp = VSUB(Tn, Ti);
227 			 TJ = VADD(Tf, To);
228 			 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
229 			 STN2(&(xo[0]), TI, TJ, ovs);
230 			 TK = VADD(Tq, Tp);
231 			 STM2(&(xo[14]), TK, ovs, &(xo[2]));
232 			 TL = VSUB(To, Tf);
233 			 STM2(&(xo[18]), TL, ovs, &(xo[2]));
234 			 TM = VSUB(Tp, Tq);
235 			 STM2(&(xo[6]), TM, ovs, &(xo[2]));
236 		    }
237 		    {
238 			 V Tx, TG, TE, TF, TC, TD;
239 			 Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
240 			 TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw)));
241 			 TC = VFNMS(LDK(KP250000000), TB, Ty);
242 			 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
243 			 TE = VSUB(TC, TD);
244 			 TF = VADD(TD, TC);
245 			 {
246 			      V TN, TO, TP, TQ;
247 			      TN = VADD(Tx, TE);
248 			      STM2(&(xo[4]), TN, ovs, &(xo[0]));
249 			      STN2(&(xo[4]), TN, TM, ovs);
250 			      TO = VADD(TG, TF);
251 			      STM2(&(xo[12]), TO, ovs, &(xo[0]));
252 			      STN2(&(xo[12]), TO, TK, ovs);
253 			      TP = VSUB(TE, Tx);
254 			      STM2(&(xo[16]), TP, ovs, &(xo[0]));
255 			      STN2(&(xo[16]), TP, TL, ovs);
256 			      TQ = VSUB(TF, TG);
257 			      STM2(&(xo[8]), TQ, ovs, &(xo[0]));
258 			      STN2(&(xo[8]), TQ, TH, ovs);
259 			 }
260 		    }
261 	       }
262 	  }
263      }
264      VLEAVE();
265 }
266 
267 static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 2, 0, 0 };
268 
XSIMD(codelet_n2bv_10)269 void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc);
270 }
271 
272 #endif
273