1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 
22 #include "rdft/rdft.h"
23 
24 typedef struct {
25      solver super;
26 } S;
27 
28 typedef struct {
29      plan_rdft2 super;
30 
31      plan *cld, *cldrest;
32      INT n, vl, nbuf, bufdist;
33      INT cs, ivs, ovs;
34 } P;
35 
36 /***************************************************************************/
37 
38 /* FIXME: have alternate copy functions that push a vector loop inside
39    the n loops? */
40 
41 /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
hc2c(INT n,R * r,R * rio,R * iio,INT os)42 static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
43 {
44      INT i;
45 
46      rio[0] = r[0];
47      iio[0] = 0;
48 
49      for (i = 1; i + i < n; ++i) {
50 	  rio[i * os] = r[i];
51 	  iio[i * os] = r[n - i];
52      }
53 
54      if (i + i == n) {	/* store the Nyquist frequency */
55 	  rio[i * os] = r[i];
56 	  iio[i * os] = K(0.0);
57      }
58 }
59 
60 /* reverse of hc2c */
c2hc(INT n,R * rio,R * iio,INT is,R * r)61 static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
62 {
63      INT i;
64 
65      r[0] = rio[0];
66 
67      for (i = 1; i + i < n; ++i) {
68 	  r[i] = rio[i * is];
69 	  r[n - i] = iio[i * is];
70      }
71 
72      if (i + i == n)		/* store the Nyquist frequency */
73 	  r[i] = rio[i * is];
74 }
75 
76 /***************************************************************************/
77 
apply_r2hc(const plan * ego_,R * r0,R * r1,R * cr,R * ci)78 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
79 {
80      const P *ego = (const P *) ego_;
81      plan_rdft *cld = (plan_rdft *) ego->cld;
82      INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
83      INT n = ego->n;
84      INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
85      R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
86      plan_rdft2 *cldrest;
87 
88      for (i = nbuf; i <= vl; i += nbuf) {
89           /* transform to bufs: */
90           cld->apply((plan *) cld, r0, bufs);
91 	  r0 += ivs * nbuf; r1 += ivs * nbuf;
92 
93           /* copy back */
94 	  for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
95 	       hc2c(n, bufs + j*bufdist, cr, ci, os);
96      }
97 
98      X(ifree)(bufs);
99 
100      /* Do the remaining transforms, if any: */
101      cldrest = (plan_rdft2 *) ego->cldrest;
102      cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
103 }
104 
apply_hc2r(const plan * ego_,R * r0,R * r1,R * cr,R * ci)105 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
106 {
107      const P *ego = (const P *) ego_;
108      plan_rdft *cld = (plan_rdft *) ego->cld;
109      INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
110      INT n = ego->n;
111      INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
112      R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
113      plan_rdft2 *cldrest;
114 
115      for (i = nbuf; i <= vl; i += nbuf) {
116           /* copy to bufs */
117 	  for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
118 	       c2hc(n, cr, ci, is, bufs + j*bufdist);
119 
120           /* transform back: */
121           cld->apply((plan *) cld, bufs, r0);
122 	  r0 += ovs * nbuf; r1 += ovs * nbuf;
123      }
124 
125      X(ifree)(bufs);
126 
127      /* Do the remaining transforms, if any: */
128      cldrest = (plan_rdft2 *) ego->cldrest;
129      cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
130 }
131 
awake(plan * ego_,enum wakefulness wakefulness)132 static void awake(plan *ego_, enum wakefulness wakefulness)
133 {
134      P *ego = (P *) ego_;
135 
136      X(plan_awake)(ego->cld, wakefulness);
137      X(plan_awake)(ego->cldrest, wakefulness);
138 }
139 
destroy(plan * ego_)140 static void destroy(plan *ego_)
141 {
142      P *ego = (P *) ego_;
143      X(plan_destroy_internal)(ego->cldrest);
144      X(plan_destroy_internal)(ego->cld);
145 }
146 
print(const plan * ego_,printer * p)147 static void print(const plan *ego_, printer *p)
148 {
149      const P *ego = (const P *) ego_;
150      p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
151 	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
152               ego->n, ego->nbuf,
153               ego->vl, ego->bufdist % ego->n,
154               ego->cld, ego->cldrest);
155 }
156 
min_nbuf(const problem_rdft2 * p,INT n,INT vl)157 static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
158 {
159      INT is, os, ivs, ovs;
160 
161      if (p->r0 != p->cr)
162 	  return 1;
163      if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
164 	  return 1;
165      A(p->vecsz->rnk == 1); /*  rank 0 and MINFTY are inplace */
166 
167      X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
168      X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
169 
170      /* handle one potentially common case: "contiguous" real and
171 	complex arrays, which overlap because of the differing sizes. */
172      if (n * X(iabs)(is) <= X(iabs)(ivs)
173 	 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
174 	 && ( ((p->cr - p->ci) <= X(iabs)(os)) ||
175 	      ((p->ci - p->cr) <= X(iabs)(os)) )
176 	 && ivs > 0 && ovs > 0) {
177 	  INT vsmin = X(imin)(ivs, ovs);
178 	  INT vsmax = X(imax)(ivs, ovs);
179 	  return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
180      }
181 
182      return vl; /* punt: just buffer the whole vector */
183 }
184 
applicable0(const problem * p_,const S * ego,const planner * plnr)185 static int applicable0(const problem *p_, const S *ego, const planner *plnr)
186 {
187      const problem_rdft2 *p = (const problem_rdft2 *) p_;
188      UNUSED(ego);
189      return(1
190 	    && p->vecsz->rnk <= 1
191 	    && p->sz->rnk == 1
192 
193 	    /* FIXME: does it make sense to do R2HCII ? */
194 	    && (p->kind == R2HC || p->kind == HC2R)
195 
196 	    /* real strides must allow for reduction to rdft */
197 	    && (2 * (p->r1 - p->r0) ==
198 		(((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
199 
200 	    && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
201 	  );
202 }
203 
applicable(const problem * p_,const S * ego,const planner * plnr)204 static int applicable(const problem *p_, const S *ego, const planner *plnr)
205 {
206      const problem_rdft2 *p;
207 
208      if (NO_BUFFERINGP(plnr)) return 0;
209 
210      if (!applicable0(p_, ego, plnr)) return 0;
211 
212      p = (const problem_rdft2 *) p_;
213      if (NO_UGLYP(plnr)) {
214 	  if (p->r0 != p->cr) return 0;
215 	  if (X(toobig)(p->sz->dims[0].n)) return 0;
216      }
217      return 1;
218 }
219 
mkplan(const solver * ego_,const problem * p_,planner * plnr)220 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
221 {
222      const S *ego = (const S *) ego_;
223      P *pln;
224      plan *cld = (plan *) 0;
225      plan *cldrest = (plan *) 0;
226      const problem_rdft2 *p = (const problem_rdft2 *) p_;
227      R *bufs = (R *) 0;
228      INT nbuf = 0, bufdist, n, vl;
229      INT ivs, ovs, rs, id, od;
230 
231      static const plan_adt padt = {
232 	  X(rdft2_solve), awake, print, destroy
233      };
234 
235      if (!applicable(p_, ego, plnr))
236           goto nada;
237 
238      n = p->sz->dims[0].n;
239      X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
240 
241      nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
242      bufdist = X(bufdist)(n, vl);
243      A(nbuf > 0);
244 
245      /* initial allocation for the purpose of planning */
246      bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
247 
248      id = ivs * (nbuf * (vl / nbuf));
249      od = ovs * (nbuf * (vl / nbuf));
250 
251      if (p->kind == R2HC) {
252 	  cld = X(mkplan_f_d)(
253 	       plnr,
254 	       X(mkproblem_rdft_d)(
255 		    X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
256 		    X(mktensor_1d)(nbuf, ivs, bufdist),
257 		    TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
258 	       0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
259 	  if (!cld) goto nada;
260 	  X(ifree)(bufs); bufs = 0;
261 
262 	  cldrest = X(mkplan_d)(plnr,
263 				X(mkproblem_rdft2_d)(
264 				     X(tensor_copy)(p->sz),
265 				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
266 				     p->r0 + id, p->r1 + id,
267 				     p->cr + od, p->ci + od,
268 				     p->kind));
269 	  if (!cldrest) goto nada;
270 
271 	  pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
272      } else {
273 	  A(p->kind == HC2R);
274 	  cld = X(mkplan_f_d)(
275 	       plnr,
276 	       X(mkproblem_rdft_d)(
277 		    X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
278 		    X(mktensor_1d)(nbuf, bufdist, ovs),
279 		    bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
280 	       0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
281 	  if (!cld) goto nada;
282 	  X(ifree)(bufs); bufs = 0;
283 
284 	  cldrest = X(mkplan_d)(plnr,
285 				X(mkproblem_rdft2_d)(
286 				     X(tensor_copy)(p->sz),
287 				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
288 				     p->r0 + od, p->r1 + od,
289 				     p->cr + id, p->ci + id,
290 				     p->kind));
291 	  if (!cldrest) goto nada;
292 	  pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
293      }
294 
295      pln->cld = cld;
296      pln->cldrest = cldrest;
297      pln->n = n;
298      pln->vl = vl;
299      pln->ivs = ivs;
300      pln->ovs = ovs;
301      X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
302      pln->nbuf = nbuf;
303      pln->bufdist = bufdist;
304 
305      X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
306 		 &pln->super.super.ops);
307      pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
308 
309      return &(pln->super.super);
310 
311  nada:
312      X(ifree0)(bufs);
313      X(plan_destroy_internal)(cldrest);
314      X(plan_destroy_internal)(cld);
315      return (plan *) 0;
316 }
317 
mksolver(void)318 static solver *mksolver(void)
319 {
320      static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
321      S *slv = MKSOLVER(S, &sadt);
322      return &(slv->super);
323 }
324 
X(rdft2_rdft_register)325 void X(rdft2_rdft_register)(planner *p)
326 {
327      REGISTER_SOLVER(p, mksolver());
328 }
329