1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:52 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hf_12 -include rdft/scalar/hf.h */
29 
30 /*
31  * This function contains 118 FP additions, 68 FP multiplications,
32  * (or, 72 additions, 22 multiplications, 46 fused multiply/add),
33  * 47 stack variables, 2 constants, and 48 memory accesses
34  */
35 #include "rdft/scalar/hf.h"
36 
hf_12(R * cr,R * ci,const R * W,stride rs,INT mb,INT me,INT ms)37 static void hf_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41      {
42 	  INT m;
43 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
44 	       E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2s, T1s, T2f, T1d, T21, T1H;
45 	       E T1Z, Te, T2p, T1l, T2h, TT, T1V, T1A, T1T;
46 	       T1 = cr[0];
47 	       T2i = ci[0];
48 	       {
49 		    E Th, Tk, Ti, T2d, Tg, Tj;
50 		    Th = cr[WS(rs, 6)];
51 		    Tk = ci[WS(rs, 6)];
52 		    Tg = W[10];
53 		    Ti = Tg * Th;
54 		    T2d = Tg * Tk;
55 		    Tj = W[11];
56 		    Tl = FMA(Tj, Tk, Ti);
57 		    T2e = FNMS(Tj, Th, T2d);
58 	       }
59 	       {
60 		    E TW, TZ, TX, T1X, TV, TY;
61 		    TW = cr[WS(rs, 9)];
62 		    TZ = ci[WS(rs, 9)];
63 		    TV = W[16];
64 		    TX = TV * TW;
65 		    T1X = TV * TZ;
66 		    TY = W[17];
67 		    T10 = FMA(TY, TZ, TX);
68 		    T1Y = FNMS(TY, TW, T1X);
69 	       }
70 	       {
71 		    E TC, TF, TD, T1R, TB, TE;
72 		    TC = cr[WS(rs, 3)];
73 		    TF = ci[WS(rs, 3)];
74 		    TB = W[4];
75 		    TD = TB * TC;
76 		    T1R = TB * TF;
77 		    TE = W[5];
78 		    TG = FMA(TE, TF, TD);
79 		    T1S = FNMS(TE, TC, T1R);
80 	       }
81 	       {
82 		    E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts;
83 		    Tn = cr[WS(rs, 10)];
84 		    Tq = ci[WS(rs, 10)];
85 		    Tm = W[18];
86 		    To = Tm * Tn;
87 		    T1o = Tm * Tq;
88 		    Tt = cr[WS(rs, 2)];
89 		    Tw = ci[WS(rs, 2)];
90 		    Ts = W[2];
91 		    Tu = Ts * Tt;
92 		    T1q = Ts * Tw;
93 		    {
94 			 E Tr, T1p, Tx, T1r, Tp, Tv;
95 			 Tp = W[19];
96 			 Tr = FMA(Tp, Tq, To);
97 			 T1p = FNMS(Tp, Tn, T1o);
98 			 Tv = W[3];
99 			 Tx = FMA(Tv, Tw, Tu);
100 			 T1r = FNMS(Tv, Tt, T1q);
101 			 Ty = Tr + Tx;
102 			 T2s = Tx - Tr;
103 			 T1s = T1p - T1r;
104 			 T2f = T1p + T1r;
105 		    }
106 	       }
107 	       {
108 		    E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17;
109 		    T12 = cr[WS(rs, 1)];
110 		    T15 = ci[WS(rs, 1)];
111 		    T11 = W[0];
112 		    T13 = T11 * T12;
113 		    T1D = T11 * T15;
114 		    T18 = cr[WS(rs, 5)];
115 		    T1b = ci[WS(rs, 5)];
116 		    T17 = W[8];
117 		    T19 = T17 * T18;
118 		    T1F = T17 * T1b;
119 		    {
120 			 E T16, T1E, T1c, T1G, T14, T1a;
121 			 T14 = W[1];
122 			 T16 = FMA(T14, T15, T13);
123 			 T1E = FNMS(T14, T12, T1D);
124 			 T1a = W[9];
125 			 T1c = FMA(T1a, T1b, T19);
126 			 T1G = FNMS(T1a, T18, T1F);
127 			 T1d = T16 + T1c;
128 			 T21 = T1c - T16;
129 			 T1H = T1E - T1G;
130 			 T1Z = T1E + T1G;
131 		    }
132 	       }
133 	       {
134 		    E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8;
135 		    T3 = cr[WS(rs, 4)];
136 		    T6 = ci[WS(rs, 4)];
137 		    T2 = W[6];
138 		    T4 = T2 * T3;
139 		    T1h = T2 * T6;
140 		    T9 = cr[WS(rs, 8)];
141 		    Tc = ci[WS(rs, 8)];
142 		    T8 = W[14];
143 		    Ta = T8 * T9;
144 		    T1j = T8 * Tc;
145 		    {
146 			 E T7, T1i, Td, T1k, T5, Tb;
147 			 T5 = W[7];
148 			 T7 = FMA(T5, T6, T4);
149 			 T1i = FNMS(T5, T3, T1h);
150 			 Tb = W[15];
151 			 Td = FMA(Tb, Tc, Ta);
152 			 T1k = FNMS(Tb, T9, T1j);
153 			 Te = T7 + Td;
154 			 T2p = Td - T7;
155 			 T1l = T1i - T1k;
156 			 T2h = T1i + T1k;
157 		    }
158 	       }
159 	       {
160 		    E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN;
161 		    TI = cr[WS(rs, 7)];
162 		    TL = ci[WS(rs, 7)];
163 		    TH = W[12];
164 		    TJ = TH * TI;
165 		    T1w = TH * TL;
166 		    TO = cr[WS(rs, 11)];
167 		    TR = ci[WS(rs, 11)];
168 		    TN = W[20];
169 		    TP = TN * TO;
170 		    T1y = TN * TR;
171 		    {
172 			 E TM, T1x, TS, T1z, TK, TQ;
173 			 TK = W[13];
174 			 TM = FMA(TK, TL, TJ);
175 			 T1x = FNMS(TK, TI, T1w);
176 			 TQ = W[21];
177 			 TS = FMA(TQ, TR, TP);
178 			 T1z = FNMS(TQ, TO, T1y);
179 			 TT = TM + TS;
180 			 T1V = TS - TM;
181 			 T1A = T1x - T1z;
182 			 T1T = T1x + T1z;
183 		    }
184 	       }
185 	       {
186 		    E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c;
187 		    {
188 			 E Tf, Tz, T2g, T2j;
189 			 Tf = T1 + Te;
190 			 Tz = Tl + Ty;
191 			 TA = Tf + Tz;
192 			 T28 = Tf - Tz;
193 			 T2g = T2e + T2f;
194 			 T2j = T2h + T2i;
195 			 T2k = T2g + T2j;
196 			 T2m = T2j - T2g;
197 		    }
198 		    {
199 			 E TU, T1e, T29, T2a;
200 			 TU = TG + TT;
201 			 T1e = T10 + T1d;
202 			 T1f = TU + T1e;
203 			 T2l = TU - T1e;
204 			 T29 = T1S + T1T;
205 			 T2a = T1Y + T1Z;
206 			 T2b = T29 - T2a;
207 			 T2c = T29 + T2a;
208 		    }
209 		    ci[WS(rs, 5)] = TA - T1f;
210 		    cr[WS(rs, 9)] = T2l - T2m;
211 		    ci[WS(rs, 8)] = T2l + T2m;
212 		    cr[0] = TA + T1f;
213 		    cr[WS(rs, 3)] = T28 - T2b;
214 		    cr[WS(rs, 6)] = T2c - T2k;
215 		    ci[WS(rs, 11)] = T2c + T2k;
216 		    ci[WS(rs, 2)] = T28 + T2b;
217 	       }
218 	       {
219 		    E T1m, T1K, T2q, T2y, T2t, T2z, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I;
220 		    E T1O;
221 		    {
222 			 E T1g, T2o, T2r, T1n;
223 			 T1g = FNMS(KP500000000, Te, T1);
224 			 T1m = FNMS(KP866025403, T1l, T1g);
225 			 T1K = FMA(KP866025403, T1l, T1g);
226 			 T2o = FNMS(KP500000000, T2h, T2i);
227 			 T2q = FNMS(KP866025403, T2p, T2o);
228 			 T2y = FMA(KP866025403, T2p, T2o);
229 			 T2r = FNMS(KP500000000, T2f, T2e);
230 			 T2t = FNMS(KP866025403, T2s, T2r);
231 			 T2z = FMA(KP866025403, T2s, T2r);
232 			 T1n = FNMS(KP500000000, Ty, Tl);
233 			 T1t = FNMS(KP866025403, T1s, T1n);
234 			 T1L = FMA(KP866025403, T1s, T1n);
235 		    }
236 		    {
237 			 E T1v, T1U, T20, T1C;
238 			 T1v = FNMS(KP500000000, TT, TG);
239 			 T1B = FNMS(KP866025403, T1A, T1v);
240 			 T1N = FMA(KP866025403, T1A, T1v);
241 			 T1U = FNMS(KP500000000, T1T, T1S);
242 			 T1W = FNMS(KP866025403, T1V, T1U);
243 			 T25 = FMA(KP866025403, T1V, T1U);
244 			 T20 = FNMS(KP500000000, T1Z, T1Y);
245 			 T22 = FNMS(KP866025403, T21, T20);
246 			 T26 = FMA(KP866025403, T21, T20);
247 			 T1C = FNMS(KP500000000, T1d, T10);
248 			 T1I = FNMS(KP866025403, T1H, T1C);
249 			 T1O = FMA(KP866025403, T1H, T1C);
250 		    }
251 		    {
252 			 E T1u, T1J, T2v, T2w;
253 			 T1u = T1m + T1t;
254 			 T1J = T1B + T1I;
255 			 cr[WS(rs, 2)] = T1u - T1J;
256 			 ci[WS(rs, 3)] = T1u + T1J;
257 			 T2v = T1W + T22;
258 			 T2w = T2t + T2q;
259 			 cr[WS(rs, 8)] = -(T2v + T2w);
260 			 ci[WS(rs, 9)] = T2w - T2v;
261 		    }
262 		    {
263 			 E T2B, T2C, T2x, T2A;
264 			 T2B = T25 + T26;
265 			 T2C = T2z + T2y;
266 			 cr[WS(rs, 10)] = T2B - T2C;
267 			 ci[WS(rs, 7)] = T2B + T2C;
268 			 T2x = T1O - T1N;
269 			 T2A = T2y - T2z;
270 			 cr[WS(rs, 7)] = T2x - T2A;
271 			 ci[WS(rs, 10)] = T2x + T2A;
272 		    }
273 		    {
274 			 E T1M, T1P, T24, T27;
275 			 T1M = T1K + T1L;
276 			 T1P = T1N + T1O;
277 			 ci[WS(rs, 1)] = T1M - T1P;
278 			 cr[WS(rs, 4)] = T1M + T1P;
279 			 T24 = T1K - T1L;
280 			 T27 = T25 - T26;
281 			 ci[WS(rs, 4)] = T24 - T27;
282 			 cr[WS(rs, 1)] = T24 + T27;
283 		    }
284 		    {
285 			 E T1Q, T23, T2n, T2u;
286 			 T1Q = T1m - T1t;
287 			 T23 = T1W - T22;
288 			 ci[0] = T1Q - T23;
289 			 cr[WS(rs, 5)] = T1Q + T23;
290 			 T2n = T1I - T1B;
291 			 T2u = T2q - T2t;
292 			 cr[WS(rs, 11)] = T2n - T2u;
293 			 ci[WS(rs, 6)] = T2n + T2u;
294 		    }
295 	       }
296 	  }
297      }
298 }
299 
300 static const tw_instr twinstr[] = {
301      { TW_FULL, 1, 12 },
302      { TW_NEXT, 1, 0 }
303 };
304 
305 static const hc2hc_desc desc = { 12, "hf_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
306 
X(codelet_hf_12)307 void X(codelet_hf_12) (planner *p) {
308      X(khc2hc_register) (p, hf_12, &desc);
309 }
310 #else
311 
312 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hf_12 -include rdft/scalar/hf.h */
313 
314 /*
315  * This function contains 118 FP additions, 60 FP multiplications,
316  * (or, 88 additions, 30 multiplications, 30 fused multiply/add),
317  * 47 stack variables, 2 constants, and 48 memory accesses
318  */
319 #include "rdft/scalar/hf.h"
320 
hf_12(R * cr,R * ci,const R * W,stride rs,INT mb,INT me,INT ms)321 static void hf_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
322 {
323      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
324      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
325      {
326 	  INT m;
327 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
328 	       E T1, T1W, T18, T23, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F;
329 	       E T1G, Ti, T1S, T1d, T26, Tt, T1a, T1T, T25, TA, T1y, T1j, T1B, TL, T1g;
330 	       E T1z, T1A;
331 	       {
332 		    E T6, T16, Tb, T17;
333 		    T1 = cr[0];
334 		    T1W = ci[0];
335 		    {
336 			 E T3, T5, T2, T4;
337 			 T3 = cr[WS(rs, 4)];
338 			 T5 = ci[WS(rs, 4)];
339 			 T2 = W[6];
340 			 T4 = W[7];
341 			 T6 = FMA(T2, T3, T4 * T5);
342 			 T16 = FNMS(T4, T3, T2 * T5);
343 		    }
344 		    {
345 			 E T8, Ta, T7, T9;
346 			 T8 = cr[WS(rs, 8)];
347 			 Ta = ci[WS(rs, 8)];
348 			 T7 = W[14];
349 			 T9 = W[15];
350 			 Tb = FMA(T7, T8, T9 * Ta);
351 			 T17 = FNMS(T9, T8, T7 * Ta);
352 		    }
353 		    T18 = KP866025403 * (T16 - T17);
354 		    T23 = KP866025403 * (Tb - T6);
355 		    Tc = T6 + Tb;
356 		    T15 = FNMS(KP500000000, Tc, T1);
357 		    T1V = T16 + T17;
358 		    T22 = FNMS(KP500000000, T1V, T1W);
359 	       }
360 	       {
361 		    E T11, T1n, TW, T1m;
362 		    {
363 			 E TO, TQ, TN, TP;
364 			 TO = cr[WS(rs, 9)];
365 			 TQ = ci[WS(rs, 9)];
366 			 TN = W[16];
367 			 TP = W[17];
368 			 TR = FMA(TN, TO, TP * TQ);
369 			 T1E = FNMS(TP, TO, TN * TQ);
370 		    }
371 		    {
372 			 E TY, T10, TX, TZ;
373 			 TY = cr[WS(rs, 5)];
374 			 T10 = ci[WS(rs, 5)];
375 			 TX = W[8];
376 			 TZ = W[9];
377 			 T11 = FMA(TX, TY, TZ * T10);
378 			 T1n = FNMS(TZ, TY, TX * T10);
379 		    }
380 		    {
381 			 E TT, TV, TS, TU;
382 			 TT = cr[WS(rs, 1)];
383 			 TV = ci[WS(rs, 1)];
384 			 TS = W[0];
385 			 TU = W[1];
386 			 TW = FMA(TS, TT, TU * TV);
387 			 T1m = FNMS(TU, TT, TS * TV);
388 		    }
389 		    T1o = KP866025403 * (T1m - T1n);
390 		    T1D = KP866025403 * (T11 - TW);
391 		    T12 = TW + T11;
392 		    T1l = FNMS(KP500000000, T12, TR);
393 		    T1F = T1m + T1n;
394 		    T1G = FNMS(KP500000000, T1F, T1E);
395 	       }
396 	       {
397 		    E Ts, T1c, Tn, T1b;
398 		    {
399 			 E Tf, Th, Te, Tg;
400 			 Tf = cr[WS(rs, 6)];
401 			 Th = ci[WS(rs, 6)];
402 			 Te = W[10];
403 			 Tg = W[11];
404 			 Ti = FMA(Te, Tf, Tg * Th);
405 			 T1S = FNMS(Tg, Tf, Te * Th);
406 		    }
407 		    {
408 			 E Tp, Tr, To, Tq;
409 			 Tp = cr[WS(rs, 2)];
410 			 Tr = ci[WS(rs, 2)];
411 			 To = W[2];
412 			 Tq = W[3];
413 			 Ts = FMA(To, Tp, Tq * Tr);
414 			 T1c = FNMS(Tq, Tp, To * Tr);
415 		    }
416 		    {
417 			 E Tk, Tm, Tj, Tl;
418 			 Tk = cr[WS(rs, 10)];
419 			 Tm = ci[WS(rs, 10)];
420 			 Tj = W[18];
421 			 Tl = W[19];
422 			 Tn = FMA(Tj, Tk, Tl * Tm);
423 			 T1b = FNMS(Tl, Tk, Tj * Tm);
424 		    }
425 		    T1d = KP866025403 * (T1b - T1c);
426 		    T26 = KP866025403 * (Ts - Tn);
427 		    Tt = Tn + Ts;
428 		    T1a = FNMS(KP500000000, Tt, Ti);
429 		    T1T = T1b + T1c;
430 		    T25 = FNMS(KP500000000, T1T, T1S);
431 	       }
432 	       {
433 		    E TK, T1i, TF, T1h;
434 		    {
435 			 E Tx, Tz, Tw, Ty;
436 			 Tx = cr[WS(rs, 3)];
437 			 Tz = ci[WS(rs, 3)];
438 			 Tw = W[4];
439 			 Ty = W[5];
440 			 TA = FMA(Tw, Tx, Ty * Tz);
441 			 T1y = FNMS(Ty, Tx, Tw * Tz);
442 		    }
443 		    {
444 			 E TH, TJ, TG, TI;
445 			 TH = cr[WS(rs, 11)];
446 			 TJ = ci[WS(rs, 11)];
447 			 TG = W[20];
448 			 TI = W[21];
449 			 TK = FMA(TG, TH, TI * TJ);
450 			 T1i = FNMS(TI, TH, TG * TJ);
451 		    }
452 		    {
453 			 E TC, TE, TB, TD;
454 			 TC = cr[WS(rs, 7)];
455 			 TE = ci[WS(rs, 7)];
456 			 TB = W[12];
457 			 TD = W[13];
458 			 TF = FMA(TB, TC, TD * TE);
459 			 T1h = FNMS(TD, TC, TB * TE);
460 		    }
461 		    T1j = KP866025403 * (T1h - T1i);
462 		    T1B = KP866025403 * (TK - TF);
463 		    TL = TF + TK;
464 		    T1g = FNMS(KP500000000, TL, TA);
465 		    T1z = T1h + T1i;
466 		    T1A = FNMS(KP500000000, T1z, T1y);
467 	       }
468 	       {
469 		    E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R;
470 		    {
471 			 E Td, Tu, T1U, T1X;
472 			 Td = T1 + Tc;
473 			 Tu = Ti + Tt;
474 			 Tv = Td + Tu;
475 			 T1N = Td - Tu;
476 			 T1U = T1S + T1T;
477 			 T1X = T1V + T1W;
478 			 T1Y = T1U + T1X;
479 			 T20 = T1X - T1U;
480 		    }
481 		    {
482 			 E TM, T13, T1O, T1P;
483 			 TM = TA + TL;
484 			 T13 = TR + T12;
485 			 T14 = TM + T13;
486 			 T1Z = TM - T13;
487 			 T1O = T1y + T1z;
488 			 T1P = T1E + T1F;
489 			 T1Q = T1O - T1P;
490 			 T1R = T1O + T1P;
491 		    }
492 		    ci[WS(rs, 5)] = Tv - T14;
493 		    cr[WS(rs, 9)] = T1Z - T20;
494 		    ci[WS(rs, 8)] = T1Z + T20;
495 		    cr[0] = Tv + T14;
496 		    cr[WS(rs, 3)] = T1N - T1Q;
497 		    cr[WS(rs, 6)] = T1R - T1Y;
498 		    ci[WS(rs, 11)] = T1R + T1Y;
499 		    ci[WS(rs, 2)] = T1N + T1Q;
500 	       }
501 	       {
502 		    E T1f, T1x, T28, T2a, T1q, T21, T1I, T29;
503 		    {
504 			 E T19, T1e, T24, T27;
505 			 T19 = T15 - T18;
506 			 T1e = T1a - T1d;
507 			 T1f = T19 + T1e;
508 			 T1x = T19 - T1e;
509 			 T24 = T22 - T23;
510 			 T27 = T25 - T26;
511 			 T28 = T24 - T27;
512 			 T2a = T27 + T24;
513 		    }
514 		    {
515 			 E T1k, T1p, T1C, T1H;
516 			 T1k = T1g - T1j;
517 			 T1p = T1l - T1o;
518 			 T1q = T1k + T1p;
519 			 T21 = T1p - T1k;
520 			 T1C = T1A - T1B;
521 			 T1H = T1D - T1G;
522 			 T1I = T1C + T1H;
523 			 T29 = T1H - T1C;
524 		    }
525 		    cr[WS(rs, 2)] = T1f - T1q;
526 		    cr[WS(rs, 8)] = T29 - T2a;
527 		    ci[WS(rs, 9)] = T29 + T2a;
528 		    ci[WS(rs, 3)] = T1f + T1q;
529 		    ci[0] = T1x - T1I;
530 		    cr[WS(rs, 11)] = T21 - T28;
531 		    ci[WS(rs, 6)] = T21 + T28;
532 		    cr[WS(rs, 5)] = T1x + T1I;
533 	       }
534 	       {
535 		    E T1t, T1J, T2e, T2g, T1w, T2b, T1M, T2f;
536 		    {
537 			 E T1r, T1s, T2c, T2d;
538 			 T1r = T15 + T18;
539 			 T1s = T1a + T1d;
540 			 T1t = T1r + T1s;
541 			 T1J = T1r - T1s;
542 			 T2c = T23 + T22;
543 			 T2d = T26 + T25;
544 			 T2e = T2c - T2d;
545 			 T2g = T2d + T2c;
546 		    }
547 		    {
548 			 E T1u, T1v, T1K, T1L;
549 			 T1u = T1g + T1j;
550 			 T1v = T1l + T1o;
551 			 T1w = T1u + T1v;
552 			 T2b = T1v - T1u;
553 			 T1K = T1B + T1A;
554 			 T1L = T1D + T1G;
555 			 T1M = T1K - T1L;
556 			 T2f = T1K + T1L;
557 		    }
558 		    ci[WS(rs, 1)] = T1t - T1w;
559 		    cr[WS(rs, 1)] = T1J + T1M;
560 		    cr[WS(rs, 4)] = T1t + T1w;
561 		    ci[WS(rs, 4)] = T1J - T1M;
562 		    cr[WS(rs, 7)] = T2b - T2e;
563 		    ci[WS(rs, 7)] = T2f + T2g;
564 		    ci[WS(rs, 10)] = T2b + T2e;
565 		    cr[WS(rs, 10)] = T2f - T2g;
566 	       }
567 	  }
568      }
569 }
570 
571 static const tw_instr twinstr[] = {
572      { TW_FULL, 1, 12 },
573      { TW_NEXT, 1, 0 }
574 };
575 
576 static const hc2hc_desc desc = { 12, "hf_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
577 
X(codelet_hf_12)578 void X(codelet_hf_12) (planner *p) {
579      X(khc2hc_register) (p, hf_12, &desc);
580 }
581 #endif
582