1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:44 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */
29 
30 /*
31  * This function contains 46 FP additions, 38 FP multiplications,
32  * (or, 12 additions, 4 multiplications, 34 fused multiply/add),
33  * 50 stack variables, 19 constants, and 18 memory accesses
34  */
35 #include "dft/simd/n1b.h"
36 
n1bv_9(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
40      DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
41      DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
42      DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
43      DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
44      DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
45      DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
46      DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
47      DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
48      DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
49      DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
50      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
51      DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
52      DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
53      DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
54      DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
55      DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
56      DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
57      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
58      {
59 	  INT i;
60 	  const R *xi;
61 	  R *xo;
62 	  xi = ii;
63 	  xo = io;
64 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
65 	       V T5, TF, Tp, Te, Td, TG, TH, Ta, Tm, Tu, Tr, Th, Ti, Tv, Ts;
66 	       V TK, TI, TJ;
67 	       {
68 		    V T1, T2, T3, T4;
69 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
70 		    T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
71 		    T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
72 		    T4 = VADD(T2, T3);
73 		    T5 = VFNMS(LDK(KP500000000), T4, T1);
74 		    TF = VADD(T1, T4);
75 		    Tp = VSUB(T2, T3);
76 	       }
77 	       {
78 		    V T6, Tf, T9, Tg;
79 		    T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
80 		    Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
81 		    {
82 			 V T7, T8, Tb, Tc;
83 			 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
84 			 T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
85 			 T9 = VADD(T7, T8);
86 			 Te = VSUB(T8, T7);
87 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
88 			 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
89 			 Td = VSUB(Tb, Tc);
90 			 Tg = VADD(Tb, Tc);
91 		    }
92 		    TG = VADD(Tf, Tg);
93 		    TH = VADD(T6, T9);
94 		    Ta = VFNMS(LDK(KP500000000), T9, T6);
95 		    Tm = VFNMS(LDK(KP439692620), Td, Ta);
96 		    Tu = VFMA(LDK(KP203604859), Ta, Te);
97 		    Tr = VFNMS(LDK(KP152703644), Te, Ta);
98 		    Th = VFNMS(LDK(KP500000000), Tg, Tf);
99 		    Ti = VFNMS(LDK(KP586256827), Th, Te);
100 		    Tv = VFNMS(LDK(KP726681596), Td, Th);
101 		    Ts = VFMA(LDK(KP968908795), Th, Td);
102 	       }
103 	       TK = VMUL(LDK(KP866025403), VSUB(TG, TH));
104 	       TI = VADD(TG, TH);
105 	       TJ = VFNMS(LDK(KP500000000), TI, TF);
106 	       ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)]));
107 	       ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0]));
108 	       ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0]));
109 	       {
110 		    V Tk, To, Tj, Tn, Tl, Tq;
111 		    Tj = VFNMS(LDK(KP347296355), Ti, Td);
112 		    Tk = VFNMS(LDK(KP907603734), Tj, Ta);
113 		    Tn = VFNMS(LDK(KP420276625), Tm, Te);
114 		    To = VFNMS(LDK(KP826351822), Tn, Th);
115 		    Tl = VFNMS(LDK(KP939692620), Tk, T5);
116 		    Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To));
117 		    ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)]));
118 		    ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0]));
119 	       }
120 	       {
121 		    V Tx, TD, TB, TE, Ty, TC;
122 		    {
123 			 V Tt, Tw, Tz, TA;
124 			 Tt = VFNMS(LDK(KP673648177), Ts, Tr);
125 			 Tw = VFMA(LDK(KP898197570), Tv, Tu);
126 			 Tx = VFNMS(LDK(KP500000000), Tw, Tt);
127 			 TD = VFMA(LDK(KP852868531), Tw, T5);
128 			 Tz = VFNMS(LDK(KP898197570), Tv, Tu);
129 			 TA = VFMA(LDK(KP673648177), Ts, Tr);
130 			 TB = VFMA(LDK(KP666666666), TA, Tz);
131 			 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA));
132 		    }
133 		    ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)]));
134 		    ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
135 		    Ty = VFMA(LDK(KP852868531), Tx, T5);
136 		    TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp));
137 		    ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0]));
138 		    ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)]));
139 	       }
140 	  }
141      }
142      VLEAVE();
143 }
144 
145 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 12, 4, 34, 0 }, &GENUS, 0, 0, 0, 0 };
146 
XSIMD(codelet_n1bv_9)147 void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc);
148 }
149 
150 #else
151 
152 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */
153 
154 /*
155  * This function contains 46 FP additions, 26 FP multiplications,
156  * (or, 30 additions, 10 multiplications, 16 fused multiply/add),
157  * 41 stack variables, 14 constants, and 18 memory accesses
158  */
159 #include "dft/simd/n1b.h"
160 
n1bv_9(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)161 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
162 {
163      DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
164      DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
165      DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
166      DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
167      DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
168      DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
169      DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
170      DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
171      DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
172      DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
173      DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
174      DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
175      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
176      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
177      {
178 	  INT i;
179 	  const R *xi;
180 	  R *xo;
181 	  xi = ii;
182 	  xo = io;
183 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
184 	       V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn;
185 	       {
186 		    V T1, T2, T3, T4;
187 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
188 		    T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
189 		    T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
190 		    T4 = VADD(T2, T3);
191 		    T5 = VFNMS(LDK(KP500000000), T4, T1);
192 		    Ty = VADD(T1, T4);
193 		    Tm = VMUL(LDK(KP866025403), VSUB(T2, T3));
194 	       }
195 	       {
196 		    V Td, Tg, Te, Tf;
197 		    Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
198 		    Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
199 		    Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
200 		    Tg = VADD(Te, Tf);
201 		    Ti = VSUB(Te, Tf);
202 		    Tw = VADD(Td, Tg);
203 		    Th = VFNMS(LDK(KP500000000), Tg, Td);
204 		    Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th));
205 		    To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th));
206 	       }
207 	       {
208 		    V T6, T9, T7, T8;
209 		    T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
210 		    T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
211 		    T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
212 		    T9 = VADD(T7, T8);
213 		    Tb = VSUB(T7, T8);
214 		    Tv = VADD(T6, T9);
215 		    Ta = VFNMS(LDK(KP500000000), T9, T6);
216 		    Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta));
217 		    Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta));
218 	       }
219 	       {
220 		    V Tx, Tz, TA, Tt, Tu;
221 		    Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw)));
222 		    Tz = VADD(Tv, Tw);
223 		    TA = VFNMS(LDK(KP500000000), Tz, Ty);
224 		    ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)]));
225 		    ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0]));
226 		    ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0]));
227 		    Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5))));
228 		    Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm));
229 		    ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)]));
230 		    ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0]));
231 		    {
232 			 V Tl, Ts, Tq, Tr, Tk, Tp;
233 			 Tk = VADD(Tc, Tj);
234 			 Tl = VADD(T5, Tk);
235 			 Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5));
236 			 Tp = VADD(Tn, To);
237 			 Tq = VBYI(VADD(Tm, Tp));
238 			 Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj)))));
239 			 ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0]));
240 			 ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)]));
241 			 ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)]));
242 			 ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0]));
243 		    }
244 	       }
245 	  }
246      }
247      VLEAVE();
248 }
249 
250 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 30, 10, 16, 0 }, &GENUS, 0, 0, 0, 0 };
251 
XSIMD(codelet_n1bv_9)252 void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc);
253 }
254 
255 #endif
256