1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:41 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include dft/simd/n1f.h */
29 
30 /*
31  * This function contains 74 FP additions, 48 FP multiplications,
32  * (or, 32 additions, 6 multiplications, 42 fused multiply/add),
33  * 51 stack variables, 6 constants, and 28 memory accesses
34  */
35 #include "dft/simd/n1f.h"
36 
n1fv_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
40      DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
41      DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
42      DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
43      DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
44      DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
45      {
46 	  INT i;
47 	  const R *xi;
48 	  R *xo;
49 	  xi = ri;
50 	  xo = ro;
51 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
52 	       V T3, TH, Ts, TV, TW, Tt, Tu, TU, Ta, To, Th, Tp, TC, Tx, TK;
53 	       V TQ, TN, TR, T14, TZ, T1, T2;
54 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
55 	       T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
56 	       T3 = VSUB(T1, T2);
57 	       TH = VADD(T1, T2);
58 	       {
59 		    V T6, TI, T9, TJ, Tn, TP, Tk, TO, Tg, TM, Td, TL;
60 		    {
61 			 V T4, T5, Ti, Tj;
62 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
63 			 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
64 			 T6 = VSUB(T4, T5);
65 			 TI = VADD(T4, T5);
66 			 {
67 			      V T7, T8, Tl, Tm;
68 			      T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
69 			      T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
70 			      T9 = VSUB(T7, T8);
71 			      TJ = VADD(T7, T8);
72 			      Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
73 			      Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
74 			      Tn = VSUB(Tl, Tm);
75 			      TP = VADD(Tl, Tm);
76 			 }
77 			 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
78 			 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
79 			 Tk = VSUB(Ti, Tj);
80 			 TO = VADD(Ti, Tj);
81 			 {
82 			      V Te, Tf, Tb, Tc;
83 			      Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
84 			      Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
85 			      Tg = VSUB(Te, Tf);
86 			      TM = VADD(Te, Tf);
87 			      Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
88 			      Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
89 			      Td = VSUB(Tb, Tc);
90 			      TL = VADD(Tb, Tc);
91 			 }
92 		    }
93 		    Ts = VSUB(T9, T6);
94 		    TV = VSUB(TL, TM);
95 		    TW = VSUB(TJ, TI);
96 		    Tt = VSUB(Tn, Tk);
97 		    Tu = VSUB(Tg, Td);
98 		    TU = VSUB(TO, TP);
99 		    Ta = VADD(T6, T9);
100 		    To = VADD(Tk, Tn);
101 		    Th = VADD(Td, Tg);
102 		    Tp = VFNMS(LDK(KP356895867), Ta, To);
103 		    TC = VFNMS(LDK(KP356895867), To, Th);
104 		    Tx = VFNMS(LDK(KP356895867), Th, Ta);
105 		    TK = VADD(TI, TJ);
106 		    TQ = VADD(TO, TP);
107 		    TN = VADD(TL, TM);
108 		    TR = VFNMS(LDK(KP356895867), TQ, TN);
109 		    T14 = VFNMS(LDK(KP356895867), TN, TK);
110 		    TZ = VFNMS(LDK(KP356895867), TK, TQ);
111 	       }
112 	       ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)]));
113 	       ST(&(xo[0]), VADD(TH, VADD(TK, VADD(TN, TQ))), ovs, &(xo[0]));
114 	       {
115 		    V Tr, Tw, Tq, Tv;
116 		    Tq = VFNMS(LDK(KP692021471), Tp, Th);
117 		    Tr = VFNMS(LDK(KP900968867), Tq, T3);
118 		    Tv = VFMA(LDK(KP554958132), Tu, Tt);
119 		    Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts));
120 		    ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
121 		    ST(&(xo[WS(os, 9)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
122 	       }
123 	       {
124 		    V T16, T18, T15, T17;
125 		    T15 = VFNMS(LDK(KP692021471), T14, TQ);
126 		    T16 = VFNMS(LDK(KP900968867), T15, TH);
127 		    T17 = VFNMS(LDK(KP554958132), TU, TW);
128 		    T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV));
129 		    ST(&(xo[WS(os, 6)]), VFMAI(T18, T16), ovs, &(xo[0]));
130 		    ST(&(xo[WS(os, 8)]), VFNMSI(T18, T16), ovs, &(xo[0]));
131 	       }
132 	       {
133 		    V Tz, TB, Ty, TA;
134 		    Ty = VFNMS(LDK(KP692021471), Tx, To);
135 		    Tz = VFNMS(LDK(KP900968867), Ty, T3);
136 		    TA = VFMA(LDK(KP554958132), Tt, Ts);
137 		    TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu));
138 		    ST(&(xo[WS(os, 13)]), VFNMSI(TB, Tz), ovs, &(xo[WS(os, 1)]));
139 		    ST(&(xo[WS(os, 1)]), VFMAI(TB, Tz), ovs, &(xo[WS(os, 1)]));
140 	       }
141 	       {
142 		    V TT, TY, TS, TX;
143 		    TS = VFNMS(LDK(KP692021471), TR, TK);
144 		    TT = VFNMS(LDK(KP900968867), TS, TH);
145 		    TX = VFMA(LDK(KP554958132), TW, TV);
146 		    TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU));
147 		    ST(&(xo[WS(os, 4)]), VFMAI(TY, TT), ovs, &(xo[0]));
148 		    ST(&(xo[WS(os, 10)]), VFNMSI(TY, TT), ovs, &(xo[0]));
149 	       }
150 	       {
151 		    V T11, T13, T10, T12;
152 		    T10 = VFNMS(LDK(KP692021471), TZ, TN);
153 		    T11 = VFNMS(LDK(KP900968867), T10, TH);
154 		    T12 = VFMA(LDK(KP554958132), TV, TU);
155 		    T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW));
156 		    ST(&(xo[WS(os, 2)]), VFMAI(T13, T11), ovs, &(xo[0]));
157 		    ST(&(xo[WS(os, 12)]), VFNMSI(T13, T11), ovs, &(xo[0]));
158 	       }
159 	       {
160 		    V TE, TG, TD, TF;
161 		    TD = VFNMS(LDK(KP692021471), TC, Ta);
162 		    TE = VFNMS(LDK(KP900968867), TD, T3);
163 		    TF = VFNMS(LDK(KP554958132), Ts, Tu);
164 		    TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt));
165 		    ST(&(xo[WS(os, 11)]), VFNMSI(TG, TE), ovs, &(xo[WS(os, 1)]));
166 		    ST(&(xo[WS(os, 3)]), VFMAI(TG, TE), ovs, &(xo[WS(os, 1)]));
167 	       }
168 	  }
169      }
170      VLEAVE();
171 }
172 
173 static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), { 32, 6, 42, 0 }, &GENUS, 0, 0, 0, 0 };
174 
XSIMD(codelet_n1fv_14)175 void XSIMD(codelet_n1fv_14) (planner *p) { X(kdft_register) (p, n1fv_14, &desc);
176 }
177 
178 #else
179 
180 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include dft/simd/n1f.h */
181 
182 /*
183  * This function contains 74 FP additions, 36 FP multiplications,
184  * (or, 50 additions, 12 multiplications, 24 fused multiply/add),
185  * 33 stack variables, 6 constants, and 28 memory accesses
186  */
187 #include "dft/simd/n1f.h"
188 
n1fv_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)189 static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
190 {
191      DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
192      DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
193      DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
194      DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
195      DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
196      DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
197      {
198 	  INT i;
199 	  const R *xi;
200 	  R *xo;
201 	  xi = ri;
202 	  xo = ro;
203 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
204 	       V T3, Ty, To, TK, Tr, TE, Ta, TJ, Tq, TB, Th, TL, Ts, TH, T1;
205 	       V T2;
206 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
207 	       T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
208 	       T3 = VSUB(T1, T2);
209 	       Ty = VADD(T1, T2);
210 	       {
211 		    V Tk, TC, Tn, TD;
212 		    {
213 			 V Ti, Tj, Tl, Tm;
214 			 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
215 			 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
216 			 Tk = VSUB(Ti, Tj);
217 			 TC = VADD(Ti, Tj);
218 			 Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
219 			 Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
220 			 Tn = VSUB(Tl, Tm);
221 			 TD = VADD(Tl, Tm);
222 		    }
223 		    To = VADD(Tk, Tn);
224 		    TK = VSUB(TC, TD);
225 		    Tr = VSUB(Tn, Tk);
226 		    TE = VADD(TC, TD);
227 	       }
228 	       {
229 		    V T6, Tz, T9, TA;
230 		    {
231 			 V T4, T5, T7, T8;
232 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
233 			 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
234 			 T6 = VSUB(T4, T5);
235 			 Tz = VADD(T4, T5);
236 			 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
237 			 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
238 			 T9 = VSUB(T7, T8);
239 			 TA = VADD(T7, T8);
240 		    }
241 		    Ta = VADD(T6, T9);
242 		    TJ = VSUB(TA, Tz);
243 		    Tq = VSUB(T9, T6);
244 		    TB = VADD(Tz, TA);
245 	       }
246 	       {
247 		    V Td, TF, Tg, TG;
248 		    {
249 			 V Tb, Tc, Te, Tf;
250 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
251 			 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
252 			 Td = VSUB(Tb, Tc);
253 			 TF = VADD(Tb, Tc);
254 			 Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
255 			 Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
256 			 Tg = VSUB(Te, Tf);
257 			 TG = VADD(Te, Tf);
258 		    }
259 		    Th = VADD(Td, Tg);
260 		    TL = VSUB(TF, TG);
261 		    Ts = VSUB(Tg, Td);
262 		    TH = VADD(TF, TG);
263 	       }
264 	       ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)]));
265 	       ST(&(xo[0]), VADD(Ty, VADD(TB, VADD(TH, TE))), ovs, &(xo[0]));
266 	       {
267 		    V Tt, Tp, TP, TQ;
268 		    Tt = VBYI(VFNMS(LDK(KP781831482), Tr, VFNMS(LDK(KP433883739), Ts, VMUL(LDK(KP974927912), Tq))));
269 		    Tp = VFMA(LDK(KP623489801), To, VFNMS(LDK(KP900968867), Th, VFNMS(LDK(KP222520933), Ta, T3)));
270 		    ST(&(xo[WS(os, 5)]), VSUB(Tp, Tt), ovs, &(xo[WS(os, 1)]));
271 		    ST(&(xo[WS(os, 9)]), VADD(Tp, Tt), ovs, &(xo[WS(os, 1)]));
272 		    TP = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK))));
273 		    TQ = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TB, Ty)));
274 		    ST(&(xo[WS(os, 2)]), VADD(TP, TQ), ovs, &(xo[0]));
275 		    ST(&(xo[WS(os, 12)]), VSUB(TQ, TP), ovs, &(xo[0]));
276 	       }
277 	       {
278 		    V Tv, Tu, TM, TI;
279 		    Tv = VBYI(VFMA(LDK(KP781831482), Tq, VFMA(LDK(KP974927912), Ts, VMUL(LDK(KP433883739), Tr))));
280 		    Tu = VFMA(LDK(KP623489801), Ta, VFNMS(LDK(KP900968867), To, VFNMS(LDK(KP222520933), Th, T3)));
281 		    ST(&(xo[WS(os, 13)]), VSUB(Tu, Tv), ovs, &(xo[WS(os, 1)]));
282 		    ST(&(xo[WS(os, 1)]), VADD(Tu, Tv), ovs, &(xo[WS(os, 1)]));
283 		    TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ))));
284 		    TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TH, Ty)));
285 		    ST(&(xo[WS(os, 6)]), VSUB(TI, TM), ovs, &(xo[0]));
286 		    ST(&(xo[WS(os, 8)]), VADD(TM, TI), ovs, &(xo[0]));
287 	       }
288 	       {
289 		    V TO, TN, Tx, Tw;
290 		    TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL))));
291 		    TN = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP222520933), TE, VFNMS(LDK(KP900968867), TB, Ty)));
292 		    ST(&(xo[WS(os, 4)]), VSUB(TN, TO), ovs, &(xo[0]));
293 		    ST(&(xo[WS(os, 10)]), VADD(TO, TN), ovs, &(xo[0]));
294 		    Tx = VBYI(VFMA(LDK(KP433883739), Tq, VFNMS(LDK(KP781831482), Ts, VMUL(LDK(KP974927912), Tr))));
295 		    Tw = VFMA(LDK(KP623489801), Th, VFNMS(LDK(KP222520933), To, VFNMS(LDK(KP900968867), Ta, T3)));
296 		    ST(&(xo[WS(os, 11)]), VSUB(Tw, Tx), ovs, &(xo[WS(os, 1)]));
297 		    ST(&(xo[WS(os, 3)]), VADD(Tw, Tx), ovs, &(xo[WS(os, 1)]));
298 	       }
299 	  }
300      }
301      VLEAVE();
302 }
303 
304 static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), { 50, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 };
305 
XSIMD(codelet_n1fv_14)306 void XSIMD(codelet_n1fv_14) (planner *p) { X(kdft_register) (p, n1fv_14, &desc);
307 }
308 
309 #endif
310