1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:53 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n2fv_14 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
29 
30 /*
31  * This function contains 74 FP additions, 48 FP multiplications,
32  * (or, 32 additions, 6 multiplications, 42 fused multiply/add),
33  * 51 stack variables, 6 constants, and 35 memory accesses
34  */
35 #include "dft/simd/n2f.h"
36 
n2fv_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n2fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
40      DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
41      DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
42      DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
43      DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
44      DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
45      {
46 	  INT i;
47 	  const R *xi;
48 	  R *xo;
49 	  xi = ri;
50 	  xo = ro;
51 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
52 	       V T3, TH, Ts, TV, TW, Tt, Tu, TU, Ta, To, Th, Tp, TC, Tx, TK;
53 	       V TQ, TN, TR, T14, TZ, T1, T2;
54 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
55 	       T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
56 	       T3 = VSUB(T1, T2);
57 	       TH = VADD(T1, T2);
58 	       {
59 		    V T6, TI, T9, TJ, Tn, TP, Tk, TO, Tg, TM, Td, TL;
60 		    {
61 			 V T4, T5, Ti, Tj;
62 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
63 			 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
64 			 T6 = VSUB(T4, T5);
65 			 TI = VADD(T4, T5);
66 			 {
67 			      V T7, T8, Tl, Tm;
68 			      T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
69 			      T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
70 			      T9 = VSUB(T7, T8);
71 			      TJ = VADD(T7, T8);
72 			      Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
73 			      Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
74 			      Tn = VSUB(Tl, Tm);
75 			      TP = VADD(Tl, Tm);
76 			 }
77 			 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
78 			 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
79 			 Tk = VSUB(Ti, Tj);
80 			 TO = VADD(Ti, Tj);
81 			 {
82 			      V Te, Tf, Tb, Tc;
83 			      Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
84 			      Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
85 			      Tg = VSUB(Te, Tf);
86 			      TM = VADD(Te, Tf);
87 			      Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
88 			      Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
89 			      Td = VSUB(Tb, Tc);
90 			      TL = VADD(Tb, Tc);
91 			 }
92 		    }
93 		    Ts = VSUB(T9, T6);
94 		    TV = VSUB(TL, TM);
95 		    TW = VSUB(TJ, TI);
96 		    Tt = VSUB(Tn, Tk);
97 		    Tu = VSUB(Tg, Td);
98 		    TU = VSUB(TO, TP);
99 		    Ta = VADD(T6, T9);
100 		    To = VADD(Tk, Tn);
101 		    Th = VADD(Td, Tg);
102 		    Tp = VFNMS(LDK(KP356895867), Ta, To);
103 		    TC = VFNMS(LDK(KP356895867), To, Th);
104 		    Tx = VFNMS(LDK(KP356895867), Th, Ta);
105 		    TK = VADD(TI, TJ);
106 		    TQ = VADD(TO, TP);
107 		    TN = VADD(TL, TM);
108 		    TR = VFNMS(LDK(KP356895867), TQ, TN);
109 		    T14 = VFNMS(LDK(KP356895867), TN, TK);
110 		    TZ = VFNMS(LDK(KP356895867), TK, TQ);
111 	       }
112 	       {
113 		    V T1a, T1b, T19, T1c, T1f, T1i, T1j;
114 		    T19 = VADD(T3, VADD(Ta, VADD(Th, To)));
115 		    STM2(&(xo[14]), T19, ovs, &(xo[2]));
116 		    T1a = VADD(TH, VADD(TK, VADD(TN, TQ)));
117 		    STM2(&(xo[0]), T1a, ovs, &(xo[0]));
118 		    {
119 			 V Tr, Tw, Tq, Tv;
120 			 Tq = VFNMS(LDK(KP692021471), Tp, Th);
121 			 Tr = VFNMS(LDK(KP900968867), Tq, T3);
122 			 Tv = VFMA(LDK(KP554958132), Tu, Tt);
123 			 Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts));
124 			 T1b = VFNMSI(Tw, Tr);
125 			 STM2(&(xo[10]), T1b, ovs, &(xo[2]));
126 			 T1c = VFMAI(Tw, Tr);
127 			 STM2(&(xo[18]), T1c, ovs, &(xo[2]));
128 		    }
129 		    {
130 			 V T16, T18, T15, T17, T1d, T1e;
131 			 T15 = VFNMS(LDK(KP692021471), T14, TQ);
132 			 T16 = VFNMS(LDK(KP900968867), T15, TH);
133 			 T17 = VFNMS(LDK(KP554958132), TU, TW);
134 			 T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV));
135 			 T1d = VFMAI(T18, T16);
136 			 STM2(&(xo[12]), T1d, ovs, &(xo[0]));
137 			 STN2(&(xo[12]), T1d, T19, ovs);
138 			 T1e = VFNMSI(T18, T16);
139 			 STM2(&(xo[16]), T1e, ovs, &(xo[0]));
140 			 STN2(&(xo[16]), T1e, T1c, ovs);
141 		    }
142 		    {
143 			 V Tz, TB, Ty, TA, T1g;
144 			 Ty = VFNMS(LDK(KP692021471), Tx, To);
145 			 Tz = VFNMS(LDK(KP900968867), Ty, T3);
146 			 TA = VFMA(LDK(KP554958132), Tt, Ts);
147 			 TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu));
148 			 T1f = VFNMSI(TB, Tz);
149 			 STM2(&(xo[26]), T1f, ovs, &(xo[2]));
150 			 T1g = VFMAI(TB, Tz);
151 			 STM2(&(xo[2]), T1g, ovs, &(xo[2]));
152 			 STN2(&(xo[0]), T1a, T1g, ovs);
153 		    }
154 		    {
155 			 V TT, TY, TS, TX, T1h;
156 			 TS = VFNMS(LDK(KP692021471), TR, TK);
157 			 TT = VFNMS(LDK(KP900968867), TS, TH);
158 			 TX = VFMA(LDK(KP554958132), TW, TV);
159 			 TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU));
160 			 T1h = VFMAI(TY, TT);
161 			 STM2(&(xo[8]), T1h, ovs, &(xo[0]));
162 			 STN2(&(xo[8]), T1h, T1b, ovs);
163 			 T1i = VFNMSI(TY, TT);
164 			 STM2(&(xo[20]), T1i, ovs, &(xo[0]));
165 		    }
166 		    {
167 			 V T11, T13, T10, T12, T1k;
168 			 T10 = VFNMS(LDK(KP692021471), TZ, TN);
169 			 T11 = VFNMS(LDK(KP900968867), T10, TH);
170 			 T12 = VFMA(LDK(KP554958132), TV, TU);
171 			 T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW));
172 			 T1j = VFMAI(T13, T11);
173 			 STM2(&(xo[4]), T1j, ovs, &(xo[0]));
174 			 T1k = VFNMSI(T13, T11);
175 			 STM2(&(xo[24]), T1k, ovs, &(xo[0]));
176 			 STN2(&(xo[24]), T1k, T1f, ovs);
177 		    }
178 		    {
179 			 V TE, TG, TD, TF, T1l, T1m;
180 			 TD = VFNMS(LDK(KP692021471), TC, Ta);
181 			 TE = VFNMS(LDK(KP900968867), TD, T3);
182 			 TF = VFNMS(LDK(KP554958132), Ts, Tu);
183 			 TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt));
184 			 T1l = VFNMSI(TG, TE);
185 			 STM2(&(xo[22]), T1l, ovs, &(xo[2]));
186 			 STN2(&(xo[20]), T1i, T1l, ovs);
187 			 T1m = VFMAI(TG, TE);
188 			 STM2(&(xo[6]), T1m, ovs, &(xo[2]));
189 			 STN2(&(xo[4]), T1j, T1m, ovs);
190 		    }
191 	       }
192 	  }
193      }
194      VLEAVE();
195 }
196 
197 static const kdft_desc desc = { 14, XSIMD_STRING("n2fv_14"), { 32, 6, 42, 0 }, &GENUS, 0, 2, 0, 0 };
198 
XSIMD(codelet_n2fv_14)199 void XSIMD(codelet_n2fv_14) (planner *p) { X(kdft_register) (p, n2fv_14, &desc);
200 }
201 
202 #else
203 
204 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n2fv_14 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
205 
206 /*
207  * This function contains 74 FP additions, 36 FP multiplications,
208  * (or, 50 additions, 12 multiplications, 24 fused multiply/add),
209  * 39 stack variables, 6 constants, and 35 memory accesses
210  */
211 #include "dft/simd/n2f.h"
212 
n2fv_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)213 static void n2fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
214 {
215      DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
216      DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
217      DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
218      DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
219      DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
220      DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
221      {
222 	  INT i;
223 	  const R *xi;
224 	  R *xo;
225 	  xi = ri;
226 	  xo = ro;
227 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
228 	       V T3, Ty, To, TK, Tr, TE, Ta, TJ, Tq, TB, Th, TL, Ts, TH, T1;
229 	       V T2;
230 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
231 	       T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
232 	       T3 = VSUB(T1, T2);
233 	       Ty = VADD(T1, T2);
234 	       {
235 		    V Tk, TC, Tn, TD;
236 		    {
237 			 V Ti, Tj, Tl, Tm;
238 			 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
239 			 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
240 			 Tk = VSUB(Ti, Tj);
241 			 TC = VADD(Ti, Tj);
242 			 Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
243 			 Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
244 			 Tn = VSUB(Tl, Tm);
245 			 TD = VADD(Tl, Tm);
246 		    }
247 		    To = VADD(Tk, Tn);
248 		    TK = VSUB(TC, TD);
249 		    Tr = VSUB(Tn, Tk);
250 		    TE = VADD(TC, TD);
251 	       }
252 	       {
253 		    V T6, Tz, T9, TA;
254 		    {
255 			 V T4, T5, T7, T8;
256 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
257 			 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
258 			 T6 = VSUB(T4, T5);
259 			 Tz = VADD(T4, T5);
260 			 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
261 			 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
262 			 T9 = VSUB(T7, T8);
263 			 TA = VADD(T7, T8);
264 		    }
265 		    Ta = VADD(T6, T9);
266 		    TJ = VSUB(TA, Tz);
267 		    Tq = VSUB(T9, T6);
268 		    TB = VADD(Tz, TA);
269 	       }
270 	       {
271 		    V Td, TF, Tg, TG;
272 		    {
273 			 V Tb, Tc, Te, Tf;
274 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
275 			 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
276 			 Td = VSUB(Tb, Tc);
277 			 TF = VADD(Tb, Tc);
278 			 Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
279 			 Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
280 			 Tg = VSUB(Te, Tf);
281 			 TG = VADD(Te, Tf);
282 		    }
283 		    Th = VADD(Td, Tg);
284 		    TL = VSUB(TF, TG);
285 		    Ts = VSUB(Tg, Td);
286 		    TH = VADD(TF, TG);
287 	       }
288 	       {
289 		    V TR, TS, TT, TU, TV, TW;
290 		    TR = VADD(T3, VADD(Ta, VADD(Th, To)));
291 		    STM2(&(xo[14]), TR, ovs, &(xo[2]));
292 		    TS = VADD(Ty, VADD(TB, VADD(TH, TE)));
293 		    STM2(&(xo[0]), TS, ovs, &(xo[0]));
294 		    {
295 			 V Tt, Tp, TP, TQ;
296 			 Tt = VBYI(VFNMS(LDK(KP781831482), Tr, VFNMS(LDK(KP433883739), Ts, VMUL(LDK(KP974927912), Tq))));
297 			 Tp = VFMA(LDK(KP623489801), To, VFNMS(LDK(KP900968867), Th, VFNMS(LDK(KP222520933), Ta, T3)));
298 			 TT = VSUB(Tp, Tt);
299 			 STM2(&(xo[10]), TT, ovs, &(xo[2]));
300 			 TU = VADD(Tp, Tt);
301 			 STM2(&(xo[18]), TU, ovs, &(xo[2]));
302 			 TP = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK))));
303 			 TQ = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TB, Ty)));
304 			 TV = VADD(TP, TQ);
305 			 STM2(&(xo[4]), TV, ovs, &(xo[0]));
306 			 TW = VSUB(TQ, TP);
307 			 STM2(&(xo[24]), TW, ovs, &(xo[0]));
308 		    }
309 		    {
310 			 V Tv, Tu, TX, TY;
311 			 Tv = VBYI(VFMA(LDK(KP781831482), Tq, VFMA(LDK(KP974927912), Ts, VMUL(LDK(KP433883739), Tr))));
312 			 Tu = VFMA(LDK(KP623489801), Ta, VFNMS(LDK(KP900968867), To, VFNMS(LDK(KP222520933), Th, T3)));
313 			 TX = VSUB(Tu, Tv);
314 			 STM2(&(xo[26]), TX, ovs, &(xo[2]));
315 			 STN2(&(xo[24]), TW, TX, ovs);
316 			 TY = VADD(Tu, Tv);
317 			 STM2(&(xo[2]), TY, ovs, &(xo[2]));
318 			 STN2(&(xo[0]), TS, TY, ovs);
319 		    }
320 		    {
321 			 V TM, TI, TZ, T10;
322 			 TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ))));
323 			 TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TH, Ty)));
324 			 TZ = VSUB(TI, TM);
325 			 STM2(&(xo[12]), TZ, ovs, &(xo[0]));
326 			 STN2(&(xo[12]), TZ, TR, ovs);
327 			 T10 = VADD(TM, TI);
328 			 STM2(&(xo[16]), T10, ovs, &(xo[0]));
329 			 STN2(&(xo[16]), T10, TU, ovs);
330 		    }
331 		    {
332 			 V T12, TO, TN, T11;
333 			 TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL))));
334 			 TN = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP222520933), TE, VFNMS(LDK(KP900968867), TB, Ty)));
335 			 T11 = VSUB(TN, TO);
336 			 STM2(&(xo[8]), T11, ovs, &(xo[0]));
337 			 STN2(&(xo[8]), T11, TT, ovs);
338 			 T12 = VADD(TO, TN);
339 			 STM2(&(xo[20]), T12, ovs, &(xo[0]));
340 			 {
341 			      V Tx, Tw, T13, T14;
342 			      Tx = VBYI(VFMA(LDK(KP433883739), Tq, VFNMS(LDK(KP781831482), Ts, VMUL(LDK(KP974927912), Tr))));
343 			      Tw = VFMA(LDK(KP623489801), Th, VFNMS(LDK(KP222520933), To, VFNMS(LDK(KP900968867), Ta, T3)));
344 			      T13 = VSUB(Tw, Tx);
345 			      STM2(&(xo[22]), T13, ovs, &(xo[2]));
346 			      STN2(&(xo[20]), T12, T13, ovs);
347 			      T14 = VADD(Tw, Tx);
348 			      STM2(&(xo[6]), T14, ovs, &(xo[2]));
349 			      STN2(&(xo[4]), TV, T14, ovs);
350 			 }
351 		    }
352 	       }
353 	  }
354      }
355      VLEAVE();
356 }
357 
358 static const kdft_desc desc = { 14, XSIMD_STRING("n2fv_14"), { 50, 12, 24, 0 }, &GENUS, 0, 2, 0, 0 };
359 
XSIMD(codelet_n2fv_14)360 void XSIMD(codelet_n2fv_14) (planner *p) { X(kdft_register) (p, n2fv_14, &desc);
361 }
362 
363 #endif
364