1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:37 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
29 
30 /*
31  * This function contains 57 FP additions, 52 FP multiplications,
32  * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
33  * 41 stack variables, 4 constants, and 20 memory accesses
34  */
35 #include "dft/simd/t3b.h"
36 
t3bv_10(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)37 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40      DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
41      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
42      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
43      {
44 	  INT m;
45 	  R *x;
46 	  x = ii;
47 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
48 	       V T2, T3, T4, Ta, T5, T6, Tt, Td, Th;
49 	       T2 = LDW(&(W[0]));
50 	       T3 = LDW(&(W[TWVL * 2]));
51 	       T4 = VZMUL(T2, T3);
52 	       Ta = VZMULJ(T2, T3);
53 	       T5 = LDW(&(W[TWVL * 4]));
54 	       T6 = VZMULJ(T4, T5);
55 	       Tt = VZMULJ(T3, T5);
56 	       Td = VZMULJ(Ta, T5);
57 	       Th = VZMULJ(T2, T5);
58 	       {
59 		    V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1;
60 		    V T8, T7;
61 		    T1 = LD(&(x[0]), ms, &(x[0]));
62 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
63 		    T8 = VZMUL(T6, T7);
64 		    T9 = VSUB(T1, T8);
65 		    TJ = VADD(T1, T8);
66 		    {
67 			 V Tp, Tx, Tr, Tv;
68 			 {
69 			      V To, Tw, Tq, Tu;
70 			      To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
71 			      Tp = VZMUL(T4, To);
72 			      Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
73 			      Tx = VZMUL(T2, Tw);
74 			      Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
75 			      Tr = VZMUL(T5, Tq);
76 			      Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
77 			      Tv = VZMUL(Tt, Tu);
78 			 }
79 			 Ts = VSUB(Tp, Tr);
80 			 Ty = VSUB(Tv, Tx);
81 			 Tz = VADD(Ts, Ty);
82 			 TN = VADD(Tp, Tr);
83 			 TO = VADD(Tv, Tx);
84 			 TP = VADD(TN, TO);
85 		    }
86 		    {
87 			 V Tc, Tl, Tf, Tj;
88 			 {
89 			      V Tb, Tk, Te, Ti;
90 			      Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
91 			      Tc = VZMUL(Ta, Tb);
92 			      Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
93 			      Tl = VZMUL(T3, Tk);
94 			      Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
95 			      Tf = VZMUL(Td, Te);
96 			      Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
97 			      Tj = VZMUL(Th, Ti);
98 			 }
99 			 Tg = VSUB(Tc, Tf);
100 			 Tm = VSUB(Tj, Tl);
101 			 Tn = VADD(Tg, Tm);
102 			 TK = VADD(Tc, Tf);
103 			 TL = VADD(Tj, Tl);
104 			 TM = VADD(TK, TL);
105 		    }
106 		    {
107 			 V TC, TA, TB, TG, TI, TE, TF, TH, TD;
108 			 TC = VSUB(Tn, Tz);
109 			 TA = VADD(Tn, Tz);
110 			 TB = VFNMS(LDK(KP250000000), TA, T9);
111 			 TE = VSUB(Tg, Tm);
112 			 TF = VSUB(Ts, Ty);
113 			 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
114 			 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
115 			 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
116 			 TH = VFNMS(LDK(KP559016994), TC, TB);
117 			 ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
118 			 ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
119 			 TD = VFMA(LDK(KP559016994), TC, TB);
120 			 ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
121 			 ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
122 		    }
123 		    {
124 			 V TS, TQ, TR, TW, TY, TU, TV, TX, TT;
125 			 TS = VSUB(TM, TP);
126 			 TQ = VADD(TM, TP);
127 			 TR = VFNMS(LDK(KP250000000), TQ, TJ);
128 			 TU = VSUB(TN, TO);
129 			 TV = VSUB(TK, TL);
130 			 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
131 			 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
132 			 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
133 			 TX = VFMA(LDK(KP559016994), TS, TR);
134 			 ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0]));
135 			 ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0]));
136 			 TT = VFNMS(LDK(KP559016994), TS, TR);
137 			 ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0]));
138 			 ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0]));
139 		    }
140 	       }
141 	  }
142      }
143      VLEAVE();
144 }
145 
146 static const tw_instr twinstr[] = {
147      VTW(0, 1),
148      VTW(0, 3),
149      VTW(0, 9),
150      { TW_NEXT, VL, 0 }
151 };
152 
153 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 39, 34, 18, 0 }, 0, 0, 0 };
154 
XSIMD(codelet_t3bv_10)155 void XSIMD(codelet_t3bv_10) (planner *p) {
156      X(kdft_dit_register) (p, t3bv_10, &desc);
157 }
158 #else
159 
160 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
161 
162 /*
163  * This function contains 57 FP additions, 42 FP multiplications,
164  * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
165  * 41 stack variables, 4 constants, and 20 memory accesses
166  */
167 #include "dft/simd/t3b.h"
168 
t3bv_10(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)169 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
170 {
171      DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
172      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
173      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
174      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
175      {
176 	  INT m;
177 	  R *x;
178 	  x = ii;
179 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
180 	       V T1, T2, T3, Ti, T6, T7, TA, Tb, To;
181 	       T1 = LDW(&(W[0]));
182 	       T2 = LDW(&(W[TWVL * 2]));
183 	       T3 = VZMULJ(T1, T2);
184 	       Ti = VZMUL(T1, T2);
185 	       T6 = LDW(&(W[TWVL * 4]));
186 	       T7 = VZMULJ(T3, T6);
187 	       TA = VZMULJ(Ti, T6);
188 	       Tb = VZMULJ(T1, T6);
189 	       To = VZMULJ(T2, T6);
190 	       {
191 		    V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz;
192 		    V TC, TB;
193 		    Tz = LD(&(x[0]), ms, &(x[0]));
194 		    TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
195 		    TC = VZMUL(TA, TB);
196 		    TD = VSUB(Tz, TC);
197 		    TQ = VADD(Tz, TC);
198 		    {
199 			 V Tk, Ts, Tm, Tq;
200 			 {
201 			      V Tj, Tr, Tl, Tp;
202 			      Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
203 			      Tk = VZMUL(Ti, Tj);
204 			      Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
205 			      Ts = VZMUL(T1, Tr);
206 			      Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
207 			      Tm = VZMUL(T6, Tl);
208 			      Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
209 			      Tq = VZMUL(To, Tp);
210 			 }
211 			 Tn = VSUB(Tk, Tm);
212 			 Tt = VSUB(Tq, Ts);
213 			 Tx = VADD(Tn, Tt);
214 			 TM = VADD(Tk, Tm);
215 			 TN = VADD(Tq, Ts);
216 			 TS = VADD(TM, TN);
217 		    }
218 		    {
219 			 V T5, Tf, T9, Td;
220 			 {
221 			      V T4, Te, T8, Tc;
222 			      T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
223 			      T5 = VZMUL(T3, T4);
224 			      Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
225 			      Tf = VZMUL(T2, Te);
226 			      T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
227 			      T9 = VZMUL(T7, T8);
228 			      Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
229 			      Td = VZMUL(Tb, Tc);
230 			 }
231 			 Ta = VSUB(T5, T9);
232 			 Tg = VSUB(Td, Tf);
233 			 Tw = VADD(Ta, Tg);
234 			 TJ = VADD(T5, T9);
235 			 TK = VADD(Td, Tf);
236 			 TR = VADD(TJ, TK);
237 		    }
238 		    {
239 			 V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG;
240 			 Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx));
241 			 TE = VADD(Tw, Tx);
242 			 TF = VFNMS(LDK(KP250000000), TE, TD);
243 			 Th = VSUB(Ta, Tg);
244 			 Tu = VSUB(Tn, Tt);
245 			 Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu)));
246 			 TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th)));
247 			 ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)]));
248 			 TH = VSUB(TF, Ty);
249 			 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
250 			 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
251 			 TG = VADD(Ty, TF);
252 			 ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)]));
253 			 ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)]));
254 		    }
255 		    {
256 			 V TV, TT, TU, TP, TY, TL, TO, TX, TW;
257 			 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
258 			 TT = VADD(TR, TS);
259 			 TU = VFNMS(LDK(KP250000000), TT, TQ);
260 			 TL = VSUB(TJ, TK);
261 			 TO = VSUB(TM, TN);
262 			 TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
263 			 TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO)));
264 			 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
265 			 TX = VADD(TV, TU);
266 			 ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0]));
267 			 ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0]));
268 			 TW = VSUB(TU, TV);
269 			 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
270 			 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
271 		    }
272 	       }
273 	  }
274      }
275      VLEAVE();
276 }
277 
278 static const tw_instr twinstr[] = {
279      VTW(0, 1),
280      VTW(0, 3),
281      VTW(0, 9),
282      { TW_NEXT, VL, 0 }
283 };
284 
285 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 51, 36, 6, 0 }, 0, 0, 0 };
286 
XSIMD(codelet_t3bv_10)287 void XSIMD(codelet_t3bv_10) (planner *p) {
288      X(kdft_dit_register) (p, t3bv_10, &desc);
289 }
290 #endif
291