1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:44 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */
29 
30 /*
31  * This function contains 118 FP additions, 68 FP multiplications,
32  * (or, 72 additions, 22 multiplications, 46 fused multiply/add),
33  * 47 stack variables, 2 constants, and 48 memory accesses
34  */
35 #include "rdft/scalar/hc2cb.h"
36 
hc2cb_12(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)37 static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41      {
42 	  INT m;
43 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
44 	       E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23;
45 	       E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD;
46 	       {
47 		    E T1, TE, T6, TM, T4, T1o, TH, T17, T9, T1r, TL, T1a;
48 		    T1 = Rp[0];
49 		    TE = Ip[0];
50 		    T6 = Rm[WS(rs, 5)];
51 		    TM = Im[WS(rs, 5)];
52 		    {
53 			 E T2, T3, TF, TG;
54 			 T2 = Rp[WS(rs, 4)];
55 			 T3 = Rm[WS(rs, 3)];
56 			 T4 = T2 + T3;
57 			 T1o = T2 - T3;
58 			 TF = Ip[WS(rs, 4)];
59 			 TG = Im[WS(rs, 3)];
60 			 TH = TF - TG;
61 			 T17 = TF + TG;
62 		    }
63 		    {
64 			 E T7, T8, TJ, TK;
65 			 T7 = Rm[WS(rs, 1)];
66 			 T8 = Rp[WS(rs, 2)];
67 			 T9 = T7 + T8;
68 			 T1r = T7 - T8;
69 			 TJ = Ip[WS(rs, 2)];
70 			 TK = Im[WS(rs, 1)];
71 			 TL = TJ - TK;
72 			 T1a = TJ + TK;
73 		    }
74 		    {
75 			 E T16, T19, T1q, T1n, T5, Ta;
76 			 T16 = FNMS(KP500000000, T4, T1);
77 			 T18 = FNMS(KP866025403, T17, T16);
78 			 T20 = FMA(KP866025403, T17, T16);
79 			 T19 = FNMS(KP500000000, T9, T6);
80 			 T1b = FMA(KP866025403, T1a, T19);
81 			 T21 = FNMS(KP866025403, T1a, T19);
82 			 T1q = FMA(KP500000000, TL, TM);
83 			 T1s = FNMS(KP866025403, T1r, T1q);
84 			 T2a = FMA(KP866025403, T1r, T1q);
85 			 T1n = FNMS(KP500000000, TH, TE);
86 			 T1p = FMA(KP866025403, T1o, T1n);
87 			 T29 = FNMS(KP866025403, T1o, T1n);
88 			 TI = TE + TH;
89 			 TN = TL - TM;
90 			 TO = TI - TN;
91 			 T5 = T1 + T4;
92 			 Ta = T6 + T9;
93 			 Tb = T5 + Ta;
94 			 To = T5 - Ta;
95 		    }
96 	       }
97 	       {
98 		    E Tc, Tp, Th, Tx, Tf, T1v, Ts, T1e, Tk, T1y, Tw, T1h;
99 		    Tc = Rp[WS(rs, 3)];
100 		    Tp = Ip[WS(rs, 3)];
101 		    Th = Rm[WS(rs, 2)];
102 		    Tx = Im[WS(rs, 2)];
103 		    {
104 			 E Td, Te, Tq, Tr;
105 			 Td = Rm[WS(rs, 4)];
106 			 Te = Rm[0];
107 			 Tf = Td + Te;
108 			 T1v = Td - Te;
109 			 Tq = Im[WS(rs, 4)];
110 			 Tr = Im[0];
111 			 Ts = Tq + Tr;
112 			 T1e = Tq - Tr;
113 		    }
114 		    {
115 			 E Ti, Tj, Tu, Tv;
116 			 Ti = Rp[WS(rs, 1)];
117 			 Tj = Rp[WS(rs, 5)];
118 			 Tk = Ti + Tj;
119 			 T1y = Ti - Tj;
120 			 Tu = Ip[WS(rs, 1)];
121 			 Tv = Ip[WS(rs, 5)];
122 			 Tw = Tu + Tv;
123 			 T1h = Tv - Tu;
124 		    }
125 		    {
126 			 E T1d, T1g, T1x, T1u, Tg, Tl;
127 			 T1d = FNMS(KP500000000, Tf, Tc);
128 			 T1f = FMA(KP866025403, T1e, T1d);
129 			 T23 = FNMS(KP866025403, T1e, T1d);
130 			 T1g = FNMS(KP500000000, Tk, Th);
131 			 T1i = FMA(KP866025403, T1h, T1g);
132 			 T24 = FNMS(KP866025403, T1h, T1g);
133 			 T1x = FMA(KP500000000, Tw, Tx);
134 			 T1z = FNMS(KP866025403, T1y, T1x);
135 			 T2d = FMA(KP866025403, T1y, T1x);
136 			 T1u = FMA(KP500000000, Ts, Tp);
137 			 T1w = FMA(KP866025403, T1v, T1u);
138 			 T2c = FNMS(KP866025403, T1v, T1u);
139 			 Tt = Tp - Ts;
140 			 Ty = Tw - Tx;
141 			 Tz = Tt - Ty;
142 			 Tg = Tc + Tf;
143 			 Tl = Th + Tk;
144 			 Tm = Tg + Tl;
145 			 TD = Tg - Tl;
146 		    }
147 	       }
148 	       Rp[0] = Tb + Tm;
149 	       {
150 		    E TA, TP, TB, TQ, Tn, TC;
151 		    TA = To - Tz;
152 		    TP = TD + TO;
153 		    Tn = W[16];
154 		    TB = Tn * TA;
155 		    TQ = Tn * TP;
156 		    TC = W[17];
157 		    Ip[WS(rs, 4)] = FNMS(TC, TP, TB);
158 		    Im[WS(rs, 4)] = FMA(TC, TA, TQ);
159 	       }
160 	       {
161 		    E TS, TV, TT, TW, TR, TU;
162 		    TS = To + Tz;
163 		    TV = TO - TD;
164 		    TR = W[4];
165 		    TT = TR * TS;
166 		    TW = TR * TV;
167 		    TU = W[5];
168 		    Ip[WS(rs, 1)] = FNMS(TU, TV, TT);
169 		    Im[WS(rs, 1)] = FMA(TU, TS, TW);
170 	       }
171 	       {
172 		    E T11, T12, T13, TX, TZ, T10, T14, TY;
173 		    T11 = TI + TN;
174 		    T12 = Tt + Ty;
175 		    T13 = T11 - T12;
176 		    TY = Tb - Tm;
177 		    TX = W[10];
178 		    TZ = TX * TY;
179 		    T10 = W[11];
180 		    T14 = T10 * TY;
181 		    Rm[0] = T11 + T12;
182 		    Rm[WS(rs, 3)] = FMA(TX, T13, T14);
183 		    Rp[WS(rs, 3)] = FNMS(T10, T13, TZ);
184 	       }
185 	       {
186 		    E T1k, T1E, T1B, T1H;
187 		    {
188 			 E T1c, T1j, T1t, T1A;
189 			 T1c = T18 + T1b;
190 			 T1j = T1f + T1i;
191 			 T1k = T1c - T1j;
192 			 T1E = T1c + T1j;
193 			 T1t = T1p - T1s;
194 			 T1A = T1w - T1z;
195 			 T1B = T1t - T1A;
196 			 T1H = T1t + T1A;
197 		    }
198 		    {
199 			 E T15, T1l, T1m, T1C;
200 			 T15 = W[18];
201 			 T1l = T15 * T1k;
202 			 T1m = W[19];
203 			 T1C = T1m * T1k;
204 			 Rp[WS(rs, 5)] = FNMS(T1m, T1B, T1l);
205 			 Rm[WS(rs, 5)] = FMA(T15, T1B, T1C);
206 		    }
207 		    {
208 			 E T1D, T1F, T1G, T1I;
209 			 T1D = W[6];
210 			 T1F = T1D * T1E;
211 			 T1G = W[7];
212 			 T1I = T1G * T1E;
213 			 Rp[WS(rs, 2)] = FNMS(T1G, T1H, T1F);
214 			 Rm[WS(rs, 2)] = FMA(T1D, T1H, T1I);
215 		    }
216 	       }
217 	       {
218 		    E T26, T2i, T2f, T2l;
219 		    {
220 			 E T22, T25, T2b, T2e;
221 			 T22 = T20 + T21;
222 			 T25 = T23 + T24;
223 			 T26 = T22 - T25;
224 			 T2i = T22 + T25;
225 			 T2b = T29 - T2a;
226 			 T2e = T2c - T2d;
227 			 T2f = T2b - T2e;
228 			 T2l = T2b + T2e;
229 		    }
230 		    {
231 			 E T1Z, T27, T28, T2g;
232 			 T1Z = W[2];
233 			 T27 = T1Z * T26;
234 			 T28 = W[3];
235 			 T2g = T28 * T26;
236 			 Rp[WS(rs, 1)] = FNMS(T28, T2f, T27);
237 			 Rm[WS(rs, 1)] = FMA(T1Z, T2f, T2g);
238 		    }
239 		    {
240 			 E T2h, T2j, T2k, T2m;
241 			 T2h = W[14];
242 			 T2j = T2h * T2i;
243 			 T2k = W[15];
244 			 T2m = T2k * T2i;
245 			 Rp[WS(rs, 4)] = FNMS(T2k, T2l, T2j);
246 			 Rm[WS(rs, 4)] = FMA(T2h, T2l, T2m);
247 		    }
248 	       }
249 	       {
250 		    E T2q, T2y, T2v, T2B;
251 		    {
252 			 E T2o, T2p, T2t, T2u;
253 			 T2o = T20 - T21;
254 			 T2p = T2c + T2d;
255 			 T2q = T2o - T2p;
256 			 T2y = T2o + T2p;
257 			 T2t = T29 + T2a;
258 			 T2u = T23 - T24;
259 			 T2v = T2t + T2u;
260 			 T2B = T2t - T2u;
261 		    }
262 		    {
263 			 E T2r, T2w, T2n, T2s;
264 			 T2n = W[8];
265 			 T2r = T2n * T2q;
266 			 T2w = T2n * T2v;
267 			 T2s = W[9];
268 			 Ip[WS(rs, 2)] = FNMS(T2s, T2v, T2r);
269 			 Im[WS(rs, 2)] = FMA(T2s, T2q, T2w);
270 		    }
271 		    {
272 			 E T2z, T2C, T2x, T2A;
273 			 T2x = W[20];
274 			 T2z = T2x * T2y;
275 			 T2C = T2x * T2B;
276 			 T2A = W[21];
277 			 Ip[WS(rs, 5)] = FNMS(T2A, T2B, T2z);
278 			 Im[WS(rs, 5)] = FMA(T2A, T2y, T2C);
279 		    }
280 	       }
281 	       {
282 		    E T1M, T1U, T1R, T1X;
283 		    {
284 			 E T1K, T1L, T1P, T1Q;
285 			 T1K = T18 - T1b;
286 			 T1L = T1w + T1z;
287 			 T1M = T1K - T1L;
288 			 T1U = T1K + T1L;
289 			 T1P = T1p + T1s;
290 			 T1Q = T1f - T1i;
291 			 T1R = T1P + T1Q;
292 			 T1X = T1P - T1Q;
293 		    }
294 		    {
295 			 E T1N, T1S, T1J, T1O;
296 			 T1J = W[0];
297 			 T1N = T1J * T1M;
298 			 T1S = T1J * T1R;
299 			 T1O = W[1];
300 			 Ip[0] = FNMS(T1O, T1R, T1N);
301 			 Im[0] = FMA(T1O, T1M, T1S);
302 		    }
303 		    {
304 			 E T1V, T1Y, T1T, T1W;
305 			 T1T = W[12];
306 			 T1V = T1T * T1U;
307 			 T1Y = T1T * T1X;
308 			 T1W = W[13];
309 			 Ip[WS(rs, 3)] = FNMS(T1W, T1X, T1V);
310 			 Im[WS(rs, 3)] = FMA(T1W, T1U, T1Y);
311 		    }
312 	       }
313 	  }
314      }
315 }
316 
317 static const tw_instr twinstr[] = {
318      { TW_FULL, 1, 12 },
319      { TW_NEXT, 1, 0 }
320 };
321 
322 static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
323 
X(codelet_hc2cb_12)324 void X(codelet_hc2cb_12) (planner *p) {
325      X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT);
326 }
327 #else
328 
329 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */
330 
331 /*
332  * This function contains 118 FP additions, 60 FP multiplications,
333  * (or, 88 additions, 30 multiplications, 30 fused multiply/add),
334  * 39 stack variables, 2 constants, and 48 memory accesses
335  */
336 #include "rdft/scalar/hc2cb.h"
337 
hc2cb_12(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)338 static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
339 {
340      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
341      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
342      {
343 	  INT m;
344 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
345 	       E T5, TH, T12, T1M, T1i, T1U, Tl, Ty, T1c, T1Y, T1s, T1Q, Ta, TM, T15;
346 	       E T1N, T1l, T1V, Tg, Tt, T19, T1X, T1p, T1P;
347 	       {
348 		    E T1, TD, T4, T1g, TG, T11, T10, T1h;
349 		    T1 = Rp[0];
350 		    TD = Ip[0];
351 		    {
352 			 E T2, T3, TE, TF;
353 			 T2 = Rp[WS(rs, 4)];
354 			 T3 = Rm[WS(rs, 3)];
355 			 T4 = T2 + T3;
356 			 T1g = KP866025403 * (T2 - T3);
357 			 TE = Ip[WS(rs, 4)];
358 			 TF = Im[WS(rs, 3)];
359 			 TG = TE - TF;
360 			 T11 = KP866025403 * (TE + TF);
361 		    }
362 		    T5 = T1 + T4;
363 		    TH = TD + TG;
364 		    T10 = FNMS(KP500000000, T4, T1);
365 		    T12 = T10 - T11;
366 		    T1M = T10 + T11;
367 		    T1h = FNMS(KP500000000, TG, TD);
368 		    T1i = T1g + T1h;
369 		    T1U = T1h - T1g;
370 	       }
371 	       {
372 		    E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q;
373 		    Th = Rm[WS(rs, 2)];
374 		    Tx = Im[WS(rs, 2)];
375 		    {
376 			 E Ti, Tj, Tu, Tv;
377 			 Ti = Rp[WS(rs, 1)];
378 			 Tj = Rp[WS(rs, 5)];
379 			 Tk = Ti + Tj;
380 			 T1a = KP866025403 * (Ti - Tj);
381 			 Tu = Ip[WS(rs, 1)];
382 			 Tv = Ip[WS(rs, 5)];
383 			 Tw = Tu + Tv;
384 			 T1r = KP866025403 * (Tv - Tu);
385 		    }
386 		    Tl = Th + Tk;
387 		    Ty = Tw - Tx;
388 		    T1b = FMA(KP500000000, Tw, Tx);
389 		    T1c = T1a - T1b;
390 		    T1Y = T1a + T1b;
391 		    T1q = FNMS(KP500000000, Tk, Th);
392 		    T1s = T1q + T1r;
393 		    T1Q = T1q - T1r;
394 	       }
395 	       {
396 		    E T6, TL, T9, T1j, TK, T14, T13, T1k;
397 		    T6 = Rm[WS(rs, 5)];
398 		    TL = Im[WS(rs, 5)];
399 		    {
400 			 E T7, T8, TI, TJ;
401 			 T7 = Rm[WS(rs, 1)];
402 			 T8 = Rp[WS(rs, 2)];
403 			 T9 = T7 + T8;
404 			 T1j = KP866025403 * (T7 - T8);
405 			 TI = Ip[WS(rs, 2)];
406 			 TJ = Im[WS(rs, 1)];
407 			 TK = TI - TJ;
408 			 T14 = KP866025403 * (TI + TJ);
409 		    }
410 		    Ta = T6 + T9;
411 		    TM = TK - TL;
412 		    T13 = FNMS(KP500000000, T9, T6);
413 		    T15 = T13 + T14;
414 		    T1N = T13 - T14;
415 		    T1k = FMA(KP500000000, TK, TL);
416 		    T1l = T1j - T1k;
417 		    T1V = T1j + T1k;
418 	       }
419 	       {
420 		    E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n;
421 		    Tc = Rp[WS(rs, 3)];
422 		    Tp = Ip[WS(rs, 3)];
423 		    {
424 			 E Td, Te, Tq, Tr;
425 			 Td = Rm[WS(rs, 4)];
426 			 Te = Rm[0];
427 			 Tf = Td + Te;
428 			 T17 = KP866025403 * (Td - Te);
429 			 Tq = Im[WS(rs, 4)];
430 			 Tr = Im[0];
431 			 Ts = Tq + Tr;
432 			 T1o = KP866025403 * (Tq - Tr);
433 		    }
434 		    Tg = Tc + Tf;
435 		    Tt = Tp - Ts;
436 		    T18 = FMA(KP500000000, Ts, Tp);
437 		    T19 = T17 + T18;
438 		    T1X = T18 - T17;
439 		    T1n = FNMS(KP500000000, Tf, Tc);
440 		    T1p = T1n + T1o;
441 		    T1P = T1n - T1o;
442 	       }
443 	       {
444 		    E Tb, Tm, TU, TW, TX, TY, TT, TV;
445 		    Tb = T5 + Ta;
446 		    Tm = Tg + Tl;
447 		    TU = Tb - Tm;
448 		    TW = TH + TM;
449 		    TX = Tt + Ty;
450 		    TY = TW - TX;
451 		    Rp[0] = Tb + Tm;
452 		    Rm[0] = TW + TX;
453 		    TT = W[10];
454 		    TV = W[11];
455 		    Rp[WS(rs, 3)] = FNMS(TV, TY, TT * TU);
456 		    Rm[WS(rs, 3)] = FMA(TV, TU, TT * TY);
457 	       }
458 	       {
459 		    E TA, TQ, TO, TS;
460 		    {
461 			 E To, Tz, TC, TN;
462 			 To = T5 - Ta;
463 			 Tz = Tt - Ty;
464 			 TA = To - Tz;
465 			 TQ = To + Tz;
466 			 TC = Tg - Tl;
467 			 TN = TH - TM;
468 			 TO = TC + TN;
469 			 TS = TN - TC;
470 		    }
471 		    {
472 			 E Tn, TB, TP, TR;
473 			 Tn = W[16];
474 			 TB = W[17];
475 			 Ip[WS(rs, 4)] = FNMS(TB, TO, Tn * TA);
476 			 Im[WS(rs, 4)] = FMA(Tn, TO, TB * TA);
477 			 TP = W[4];
478 			 TR = W[5];
479 			 Ip[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
480 			 Im[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
481 		    }
482 	       }
483 	       {
484 		    E T28, T2e, T2c, T2g;
485 		    {
486 			 E T26, T27, T2a, T2b;
487 			 T26 = T1M - T1N;
488 			 T27 = T1X + T1Y;
489 			 T28 = T26 - T27;
490 			 T2e = T26 + T27;
491 			 T2a = T1U + T1V;
492 			 T2b = T1P - T1Q;
493 			 T2c = T2a + T2b;
494 			 T2g = T2a - T2b;
495 		    }
496 		    {
497 			 E T25, T29, T2d, T2f;
498 			 T25 = W[8];
499 			 T29 = W[9];
500 			 Ip[WS(rs, 2)] = FNMS(T29, T2c, T25 * T28);
501 			 Im[WS(rs, 2)] = FMA(T25, T2c, T29 * T28);
502 			 T2d = W[20];
503 			 T2f = W[21];
504 			 Ip[WS(rs, 5)] = FNMS(T2f, T2g, T2d * T2e);
505 			 Im[WS(rs, 5)] = FMA(T2d, T2g, T2f * T2e);
506 		    }
507 	       }
508 	       {
509 		    E T1S, T22, T20, T24;
510 		    {
511 			 E T1O, T1R, T1W, T1Z;
512 			 T1O = T1M + T1N;
513 			 T1R = T1P + T1Q;
514 			 T1S = T1O - T1R;
515 			 T22 = T1O + T1R;
516 			 T1W = T1U - T1V;
517 			 T1Z = T1X - T1Y;
518 			 T20 = T1W - T1Z;
519 			 T24 = T1W + T1Z;
520 		    }
521 		    {
522 			 E T1L, T1T, T21, T23;
523 			 T1L = W[2];
524 			 T1T = W[3];
525 			 Rp[WS(rs, 1)] = FNMS(T1T, T20, T1L * T1S);
526 			 Rm[WS(rs, 1)] = FMA(T1T, T1S, T1L * T20);
527 			 T21 = W[14];
528 			 T23 = W[15];
529 			 Rp[WS(rs, 4)] = FNMS(T23, T24, T21 * T22);
530 			 Rm[WS(rs, 4)] = FMA(T23, T22, T21 * T24);
531 		    }
532 	       }
533 	       {
534 		    E T1C, T1I, T1G, T1K;
535 		    {
536 			 E T1A, T1B, T1E, T1F;
537 			 T1A = T12 + T15;
538 			 T1B = T1p + T1s;
539 			 T1C = T1A - T1B;
540 			 T1I = T1A + T1B;
541 			 T1E = T1i + T1l;
542 			 T1F = T19 + T1c;
543 			 T1G = T1E - T1F;
544 			 T1K = T1E + T1F;
545 		    }
546 		    {
547 			 E T1z, T1D, T1H, T1J;
548 			 T1z = W[18];
549 			 T1D = W[19];
550 			 Rp[WS(rs, 5)] = FNMS(T1D, T1G, T1z * T1C);
551 			 Rm[WS(rs, 5)] = FMA(T1D, T1C, T1z * T1G);
552 			 T1H = W[6];
553 			 T1J = W[7];
554 			 Rp[WS(rs, 2)] = FNMS(T1J, T1K, T1H * T1I);
555 			 Rm[WS(rs, 2)] = FMA(T1J, T1I, T1H * T1K);
556 		    }
557 	       }
558 	       {
559 		    E T1e, T1w, T1u, T1y;
560 		    {
561 			 E T16, T1d, T1m, T1t;
562 			 T16 = T12 - T15;
563 			 T1d = T19 - T1c;
564 			 T1e = T16 - T1d;
565 			 T1w = T16 + T1d;
566 			 T1m = T1i - T1l;
567 			 T1t = T1p - T1s;
568 			 T1u = T1m + T1t;
569 			 T1y = T1m - T1t;
570 		    }
571 		    {
572 			 E TZ, T1f, T1v, T1x;
573 			 TZ = W[0];
574 			 T1f = W[1];
575 			 Ip[0] = FNMS(T1f, T1u, TZ * T1e);
576 			 Im[0] = FMA(TZ, T1u, T1f * T1e);
577 			 T1v = W[12];
578 			 T1x = W[13];
579 			 Ip[WS(rs, 3)] = FNMS(T1x, T1y, T1v * T1w);
580 			 Im[WS(rs, 3)] = FMA(T1v, T1y, T1x * T1w);
581 		    }
582 	       }
583 	  }
584      }
585 }
586 
587 static const tw_instr twinstr[] = {
588      { TW_FULL, 1, 12 },
589      { TW_NEXT, 1, 0 }
590 };
591 
592 static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
593 
X(codelet_hc2cb_12)594 void X(codelet_hc2cb_12) (planner *p) {
595      X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT);
596 }
597 #endif
598