1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:48 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
29 
30 /*
31  * This function contains 122 FP additions, 72 FP multiplications,
32  * (or, 68 additions, 18 multiplications, 54 fused multiply/add),
33  * 91 stack variables, 4 constants, and 40 memory accesses
34  */
35 #include "rdft/scalar/hc2cb.h"
36 
hc2cbdft_10(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)37 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43      {
44 	  INT m;
45 	  for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
46 	       E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV;
47 	       E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u;
48 	       {
49 		    E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2;
50 		    T1 = Rp[0];
51 		    T2 = Rm[WS(rs, 4)];
52 		    T3 = T1 + T2;
53 		    Tl = T1 - T2;
54 		    {
55 			 E Tb, Tc, Te, Tf;
56 			 Tb = Rp[WS(rs, 4)];
57 			 Tc = Rm[0];
58 			 Td = Tb + Tc;
59 			 Tp = Tb - Tc;
60 			 Te = Rm[WS(rs, 3)];
61 			 Tf = Rp[WS(rs, 1)];
62 			 Tg = Te + Tf;
63 			 Tq = Te - Tf;
64 		    }
65 		    Th = Td + Tg;
66 		    Tr = Tp + Tq;
67 		    {
68 			 E T4, T5, T7, T8;
69 			 T4 = Rp[WS(rs, 2)];
70 			 T5 = Rm[WS(rs, 2)];
71 			 T6 = T4 + T5;
72 			 Tm = T4 - T5;
73 			 T7 = Rm[WS(rs, 1)];
74 			 T8 = Rp[WS(rs, 3)];
75 			 T9 = T7 + T8;
76 			 Tn = T7 - T8;
77 		    }
78 		    Ta = T6 + T9;
79 		    To = Tm + Tn;
80 		    Tu = To - Tr;
81 		    T14 = Ta - Th;
82 		    Ti = Ta + Th;
83 		    T13 = FNMS(KP250000000, Ti, T3);
84 		    Ts = To + Tr;
85 		    Tt = FNMS(KP250000000, Ts, Tl);
86 		    {
87 			 E T1n, T1o, TX, TY;
88 			 T1n = Td - Tg;
89 			 T1o = T6 - T9;
90 			 T1p = FNMS(KP618033988, T1o, T1n);
91 			 T23 = FMA(KP618033988, T1n, T1o);
92 			 TX = Tm - Tn;
93 			 TY = Tp - Tq;
94 			 TZ = FMA(KP618033988, TY, TX);
95 			 T1z = FNMS(KP618033988, TX, TY);
96 		    }
97 	       }
98 	       {
99 		    E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP;
100 		    TO = Ip[0];
101 		    TP = Im[WS(rs, 4)];
102 		    TQ = TO + TP;
103 		    T1g = TO - TP;
104 		    {
105 			 E TD, TE, TG, TH;
106 			 TD = Ip[WS(rs, 4)];
107 			 TE = Im[0];
108 			 TF = TD + TE;
109 			 T16 = TD - TE;
110 			 TG = Im[WS(rs, 3)];
111 			 TH = Ip[WS(rs, 1)];
112 			 TI = TG + TH;
113 			 T17 = TH - TG;
114 		    }
115 		    TS = TF - TI;
116 		    T1i = T16 + T17;
117 		    {
118 			 E Tw, Tx, Tz, TA;
119 			 Tw = Ip[WS(rs, 2)];
120 			 Tx = Im[WS(rs, 2)];
121 			 Ty = Tw + Tx;
122 			 T19 = Tw - Tx;
123 			 Tz = Im[WS(rs, 1)];
124 			 TA = Ip[WS(rs, 3)];
125 			 TB = Tz + TA;
126 			 T1a = TA - Tz;
127 		    }
128 		    TR = Ty - TB;
129 		    T1h = T19 + T1a;
130 		    TV = TR - TS;
131 		    T1l = T1h - T1i;
132 		    TT = TR + TS;
133 		    TU = FNMS(KP250000000, TT, TQ);
134 		    T1j = T1h + T1i;
135 		    T1k = FNMS(KP250000000, T1j, T1g);
136 		    {
137 			 E T18, T1b, TC, TJ;
138 			 T18 = T16 - T17;
139 			 T1b = T19 - T1a;
140 			 T1c = FNMS(KP618033988, T1b, T18);
141 			 T1Y = FMA(KP618033988, T18, T1b);
142 			 TC = Ty + TB;
143 			 TJ = TF + TI;
144 			 TK = FMA(KP618033988, TJ, TC);
145 			 T1u = FNMS(KP618033988, TC, TJ);
146 		    }
147 	       }
148 	       {
149 		    E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c;
150 		    E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p;
151 		    E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i;
152 		    E T2j, T2u, T1y, TW, T22, T2l, T2r;
153 		    Tj = T3 + Ti;
154 		    T2y = T1g + T1j;
155 		    T2a = TQ + TT;
156 		    T1y = FNMS(KP559016994, TV, TU);
157 		    T1A = FMA(KP951056516, T1z, T1y);
158 		    T2q = FNMS(KP951056516, T1z, T1y);
159 		    TW = FMA(KP559016994, TV, TU);
160 		    T10 = FMA(KP951056516, TZ, TW);
161 		    T1Q = FNMS(KP951056516, TZ, TW);
162 		    T22 = FMA(KP559016994, T1l, T1k);
163 		    T24 = FNMS(KP951056516, T23, T22);
164 		    T2k = FMA(KP951056516, T23, T22);
165 		    {
166 			 E T1m, T1v, T2n, T1t;
167 			 T1m = FNMS(KP559016994, T1l, T1k);
168 			 T1q = FNMS(KP951056516, T1p, T1m);
169 			 T1K = FMA(KP951056516, T1p, T1m);
170 			 {
171 			      E T27, TL, T1N, Tv;
172 			      T27 = Tl + Ts;
173 			      T26 = W[9];
174 			      T28 = T26 * T27;
175 			      T29 = W[8];
176 			      T2c = T29 * T27;
177 			      Tv = FMA(KP559016994, Tu, Tt);
178 			      TL = FNMS(KP951056516, TK, Tv);
179 			      T1N = FMA(KP951056516, TK, Tv);
180 			      Tk = W[1];
181 			      TM = Tk * TL;
182 			      TN = W[0];
183 			      T2w = TN * TL;
184 			      T1M = W[17];
185 			      T1O = T1M * T1N;
186 			      T1P = W[16];
187 			      T1S = T1P * T1N;
188 			 }
189 			 T1t = FNMS(KP559016994, Tu, Tt);
190 			 T1v = FNMS(KP951056516, T1u, T1t);
191 			 T2n = FMA(KP951056516, T1u, T1t);
192 			 T1s = W[5];
193 			 T1w = T1s * T1v;
194 			 T1x = W[4];
195 			 T1C = T1x * T1v;
196 			 T2m = W[13];
197 			 T2o = T2m * T2n;
198 			 T2p = W[12];
199 			 T2s = T2p * T2n;
200 			 {
201 			      E T1d, T1H, T15, T1Z, T2h, T1X;
202 			      T15 = FNMS(KP559016994, T14, T13);
203 			      T1d = FMA(KP951056516, T1c, T15);
204 			      T1H = FNMS(KP951056516, T1c, T15);
205 			      T12 = W[2];
206 			      T1e = T12 * T1d;
207 			      T1f = W[3];
208 			      T1E = T1f * T1d;
209 			      T1G = W[14];
210 			      T1I = T1G * T1H;
211 			      T1J = W[15];
212 			      T1U = T1J * T1H;
213 			      T1X = FMA(KP559016994, T14, T13);
214 			      T1Z = FMA(KP951056516, T1Y, T1X);
215 			      T2h = FNMS(KP951056516, T1Y, T1X);
216 			      T1W = W[6];
217 			      T20 = T1W * T1Z;
218 			      T21 = W[7];
219 			      T2e = T21 * T1Z;
220 			      T2g = W[10];
221 			      T2i = T2g * T2h;
222 			      T2j = W[11];
223 			      T2u = T2j * T2h;
224 			 }
225 		    }
226 		    {
227 			 E T11, T2x, T1r, T1B;
228 			 T11 = FMA(TN, T10, TM);
229 			 Rp[0] = Tj - T11;
230 			 Rm[0] = Tj + T11;
231 			 T2x = FNMS(Tk, T10, T2w);
232 			 Im[0] = T2x - T2y;
233 			 Ip[0] = T2x + T2y;
234 			 T1r = FNMS(T1f, T1q, T1e);
235 			 T1B = FMA(T1x, T1A, T1w);
236 			 Rp[WS(rs, 1)] = T1r - T1B;
237 			 Rm[WS(rs, 1)] = T1B + T1r;
238 			 {
239 			      E T1D, T1F, T1L, T1R;
240 			      T1D = FNMS(T1s, T1A, T1C);
241 			      T1F = FMA(T12, T1q, T1E);
242 			      Im[WS(rs, 1)] = T1D - T1F;
243 			      Ip[WS(rs, 1)] = T1D + T1F;
244 			      T1L = FNMS(T1J, T1K, T1I);
245 			      T1R = FMA(T1P, T1Q, T1O);
246 			      Rp[WS(rs, 4)] = T1L - T1R;
247 			      Rm[WS(rs, 4)] = T1R + T1L;
248 			 }
249 		    }
250 		    {
251 			 E T1T, T1V, T2t, T2v;
252 			 T1T = FNMS(T1M, T1Q, T1S);
253 			 T1V = FMA(T1G, T1K, T1U);
254 			 Im[WS(rs, 4)] = T1T - T1V;
255 			 Ip[WS(rs, 4)] = T1T + T1V;
256 			 T2t = FNMS(T2m, T2q, T2s);
257 			 T2v = FMA(T2g, T2k, T2u);
258 			 Im[WS(rs, 3)] = T2t - T2v;
259 			 Ip[WS(rs, 3)] = T2t + T2v;
260 		    }
261 		    T2l = FNMS(T2j, T2k, T2i);
262 		    T2r = FMA(T2p, T2q, T2o);
263 		    Rp[WS(rs, 3)] = T2l - T2r;
264 		    Rm[WS(rs, 3)] = T2r + T2l;
265 		    {
266 			 E T25, T2b, T2d, T2f;
267 			 T25 = FNMS(T21, T24, T20);
268 			 T2b = FMA(T29, T2a, T28);
269 			 Rp[WS(rs, 2)] = T25 - T2b;
270 			 Rm[WS(rs, 2)] = T2b + T25;
271 			 T2d = FNMS(T26, T2a, T2c);
272 			 T2f = FMA(T1W, T24, T2e);
273 			 Im[WS(rs, 2)] = T2d - T2f;
274 			 Ip[WS(rs, 2)] = T2d + T2f;
275 		    }
276 	       }
277 	  }
278      }
279 }
280 
281 static const tw_instr twinstr[] = {
282      { TW_FULL, 1, 10 },
283      { TW_NEXT, 1, 0 }
284 };
285 
286 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 68, 18, 54, 0 } };
287 
X(codelet_hc2cbdft_10)288 void X(codelet_hc2cbdft_10) (planner *p) {
289      X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
290 }
291 #else
292 
293 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
294 
295 /*
296  * This function contains 122 FP additions, 60 FP multiplications,
297  * (or, 92 additions, 30 multiplications, 30 fused multiply/add),
298  * 61 stack variables, 4 constants, and 40 memory accesses
299  */
300 #include "rdft/scalar/hc2cb.h"
301 
hc2cbdft_10(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)302 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
303 {
304      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
305      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
306      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
307      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
308      {
309 	  INT m;
310 	  for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
311 	       E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
312 	       E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
313 	       {
314 		    E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
315 		    T1 = Rp[0];
316 		    T2 = Rm[WS(rs, 4)];
317 		    T3 = T1 + T2;
318 		    TS = T1 - T2;
319 		    {
320 			 E Tb, Tc, Te, Tf;
321 			 Tb = Rp[WS(rs, 4)];
322 			 Tc = Rm[0];
323 			 Td = Tb + Tc;
324 			 To = Tb - Tc;
325 			 Te = Rm[WS(rs, 3)];
326 			 Tf = Rp[WS(rs, 1)];
327 			 Tg = Te + Tf;
328 			 Tp = Te - Tf;
329 		    }
330 		    Th = Td + Tg;
331 		    TQ = To + Tp;
332 		    {
333 			 E T4, T5, T7, T8;
334 			 T4 = Rp[WS(rs, 2)];
335 			 T5 = Rm[WS(rs, 2)];
336 			 T6 = T4 + T5;
337 			 Tl = T4 - T5;
338 			 T7 = Rm[WS(rs, 1)];
339 			 T8 = Rp[WS(rs, 3)];
340 			 T9 = T7 + T8;
341 			 Tm = T7 - T8;
342 		    }
343 		    Ta = T6 + T9;
344 		    TP = Tl + Tm;
345 		    TR = KP559016994 * (TP - TQ);
346 		    T13 = KP559016994 * (Ta - Th);
347 		    Ti = Ta + Th;
348 		    T12 = FNMS(KP250000000, Ti, T3);
349 		    TT = TP + TQ;
350 		    TU = FNMS(KP250000000, TT, TS);
351 		    {
352 			 E T1e, T1f, Tn, Tq;
353 			 T1e = T6 - T9;
354 			 T1f = Td - Tg;
355 			 T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
356 			 T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
357 			 Tn = Tl - Tm;
358 			 Tq = To - Tp;
359 			 Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
360 			 T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
361 		    }
362 	       }
363 	       {
364 		    E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
365 		    TH = Ip[0];
366 		    TI = Im[WS(rs, 4)];
367 		    TJ = TH + TI;
368 		    T1h = TH - TI;
369 		    {
370 			 E Tz, TA, TC, TD;
371 			 Tz = Ip[WS(rs, 4)];
372 			 TA = Im[0];
373 			 TB = Tz + TA;
374 			 T18 = Tz - TA;
375 			 TC = Im[WS(rs, 3)];
376 			 TD = Ip[WS(rs, 1)];
377 			 TE = TC + TD;
378 			 T19 = TD - TC;
379 		    }
380 		    TF = TB - TE;
381 		    T1j = T18 + T19;
382 		    {
383 			 E Ts, Tt, Tv, Tw;
384 			 Ts = Ip[WS(rs, 2)];
385 			 Tt = Im[WS(rs, 2)];
386 			 Tu = Ts + Tt;
387 			 T15 = Ts - Tt;
388 			 Tv = Im[WS(rs, 1)];
389 			 Tw = Ip[WS(rs, 3)];
390 			 Tx = Tv + Tw;
391 			 T16 = Tw - Tv;
392 		    }
393 		    Ty = Tu - Tx;
394 		    T1i = T15 + T16;
395 		    TG = KP559016994 * (Ty - TF);
396 		    T1m = KP559016994 * (T1i - T1j);
397 		    TK = Ty + TF;
398 		    TL = FNMS(KP250000000, TK, TJ);
399 		    T1k = T1i + T1j;
400 		    T1l = FNMS(KP250000000, T1k, T1h);
401 		    {
402 			 E T17, T1a, TW, TX;
403 			 T17 = T15 - T16;
404 			 T1a = T18 - T19;
405 			 T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
406 			 T1P = FMA(KP951056516, T17, KP587785252 * T1a);
407 			 TW = Tu + Tx;
408 			 TX = TB + TE;
409 			 TY = FMA(KP951056516, TW, KP587785252 * TX);
410 			 T1w = FNMS(KP951056516, TX, KP587785252 * TW);
411 		    }
412 	       }
413 	       {
414 		    E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
415 		    E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
416 		    Tj = T3 + Ti;
417 		    T2g = T1h + T1k;
418 		    TM = TG + TL;
419 		    TN = Tr + TM;
420 		    T1H = TM - Tr;
421 		    T1S = T1m + T1l;
422 		    T1U = T1S - T1T;
423 		    T26 = T1T + T1S;
424 		    TV = TR + TU;
425 		    TZ = TV - TY;
426 		    T1J = TV + TY;
427 		    {
428 			 E T1O, T14, T1r, T1n, T1v;
429 			 T1O = T13 + T12;
430 			 T1Q = T1O + T1P;
431 			 T24 = T1O - T1P;
432 			 T14 = T12 - T13;
433 			 T1c = T14 - T1b;
434 			 T1C = T14 + T1b;
435 			 T1r = TL - TG;
436 			 T1t = T1r - T1s;
437 			 T29 = T1s + T1r;
438 			 T1n = T1l - T1m;
439 			 T1o = T1g + T1n;
440 			 T1E = T1n - T1g;
441 			 T1v = TU - TR;
442 			 T1x = T1v + T1w;
443 			 T2b = T1v - T1w;
444 			 {
445 			      E T1X, T1Z, T1W, T1Y;
446 			      T1X = TS + TT;
447 			      T1Z = TJ + TK;
448 			      T1W = W[9];
449 			      T1Y = W[8];
450 			      T20 = FMA(T1W, T1X, T1Y * T1Z);
451 			      T21 = FNMS(T1W, T1Z, T1Y * T1X);
452 			 }
453 		    }
454 		    {
455 			 E T10, T2f, Tk, TO;
456 			 Tk = W[0];
457 			 TO = W[1];
458 			 T10 = FMA(Tk, TN, TO * TZ);
459 			 T2f = FNMS(TO, TN, Tk * TZ);
460 			 Rp[0] = Tj - T10;
461 			 Ip[0] = T2f + T2g;
462 			 Rm[0] = Tj + T10;
463 			 Im[0] = T2f - T2g;
464 		    }
465 		    {
466 			 E T1V, T22, T1N, T1R;
467 			 T1N = W[6];
468 			 T1R = W[7];
469 			 T1V = FNMS(T1R, T1U, T1N * T1Q);
470 			 T22 = FMA(T1R, T1Q, T1N * T1U);
471 			 Rp[WS(rs, 2)] = T1V - T20;
472 			 Ip[WS(rs, 2)] = T21 + T22;
473 			 Rm[WS(rs, 2)] = T20 + T1V;
474 			 Im[WS(rs, 2)] = T21 - T22;
475 		    }
476 		    {
477 			 E T1p, T1A, T1y, T1z;
478 			 {
479 			      E T11, T1d, T1q, T1u;
480 			      T11 = W[2];
481 			      T1d = W[3];
482 			      T1p = FNMS(T1d, T1o, T11 * T1c);
483 			      T1A = FMA(T1d, T1c, T11 * T1o);
484 			      T1q = W[4];
485 			      T1u = W[5];
486 			      T1y = FMA(T1q, T1t, T1u * T1x);
487 			      T1z = FNMS(T1u, T1t, T1q * T1x);
488 			 }
489 			 Rp[WS(rs, 1)] = T1p - T1y;
490 			 Ip[WS(rs, 1)] = T1z + T1A;
491 			 Rm[WS(rs, 1)] = T1y + T1p;
492 			 Im[WS(rs, 1)] = T1z - T1A;
493 		    }
494 		    {
495 			 E T1F, T1M, T1K, T1L;
496 			 {
497 			      E T1B, T1D, T1G, T1I;
498 			      T1B = W[14];
499 			      T1D = W[15];
500 			      T1F = FNMS(T1D, T1E, T1B * T1C);
501 			      T1M = FMA(T1D, T1C, T1B * T1E);
502 			      T1G = W[16];
503 			      T1I = W[17];
504 			      T1K = FMA(T1G, T1H, T1I * T1J);
505 			      T1L = FNMS(T1I, T1H, T1G * T1J);
506 			 }
507 			 Rp[WS(rs, 4)] = T1F - T1K;
508 			 Ip[WS(rs, 4)] = T1L + T1M;
509 			 Rm[WS(rs, 4)] = T1K + T1F;
510 			 Im[WS(rs, 4)] = T1L - T1M;
511 		    }
512 		    {
513 			 E T27, T2e, T2c, T2d;
514 			 {
515 			      E T23, T25, T28, T2a;
516 			      T23 = W[10];
517 			      T25 = W[11];
518 			      T27 = FNMS(T25, T26, T23 * T24);
519 			      T2e = FMA(T25, T24, T23 * T26);
520 			      T28 = W[12];
521 			      T2a = W[13];
522 			      T2c = FMA(T28, T29, T2a * T2b);
523 			      T2d = FNMS(T2a, T29, T28 * T2b);
524 			 }
525 			 Rp[WS(rs, 3)] = T27 - T2c;
526 			 Ip[WS(rs, 3)] = T2d + T2e;
527 			 Rm[WS(rs, 3)] = T2c + T27;
528 			 Im[WS(rs, 3)] = T2d - T2e;
529 		    }
530 	       }
531 	  }
532      }
533 }
534 
535 static const tw_instr twinstr[] = {
536      { TW_FULL, 1, 10 },
537      { TW_NEXT, 1, 0 }
538 };
539 
540 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 92, 30, 30, 0 } };
541 
X(codelet_hc2cbdft_10)542 void X(codelet_hc2cbdft_10) (planner *p) {
543      X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
544 }
545 #endif
546