1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:09 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */
29 
30 /*
31  * This function contains 66 FP additions, 36 FP multiplications,
32  * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
33  * 34 stack variables, 1 constants, and 32 memory accesses
34  */
35 #include "rdft/scalar/hc2cf.h"
36 
hc2cf_8(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)37 static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40      {
41 	  INT m;
42 	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
43 	       E T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
44 	       E TX, Ty, TZ, TV, T10;
45 	       T1 = Rp[0];
46 	       T1m = Rm[0];
47 	       {
48 		    E T3, T6, T4, T1k, T2, T5;
49 		    T3 = Rp[WS(rs, 2)];
50 		    T6 = Rm[WS(rs, 2)];
51 		    T2 = W[6];
52 		    T4 = T2 * T3;
53 		    T1k = T2 * T6;
54 		    T5 = W[7];
55 		    T7 = FMA(T5, T6, T4);
56 		    T1l = FNMS(T5, T3, T1k);
57 	       }
58 	       {
59 		    E Tg, Tj, Th, TR, Tf, Ti;
60 		    Tg = Rp[WS(rs, 3)];
61 		    Tj = Rm[WS(rs, 3)];
62 		    Tf = W[10];
63 		    Th = Tf * Tg;
64 		    TR = Tf * Tj;
65 		    Ti = W[11];
66 		    Tk = FMA(Ti, Tj, Th);
67 		    TS = FNMS(Ti, Tg, TR);
68 	       }
69 	       {
70 		    E Ta, Td, Tb, TP, T9, Tc;
71 		    Ta = Rp[WS(rs, 1)];
72 		    Td = Rm[WS(rs, 1)];
73 		    T9 = W[2];
74 		    Tb = T9 * Ta;
75 		    TP = T9 * Td;
76 		    Tc = W[3];
77 		    Te = FMA(Tc, Td, Tb);
78 		    TQ = FNMS(Tc, Ta, TP);
79 	       }
80 	       {
81 		    E TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
82 		    TB = Ip[WS(rs, 3)];
83 		    TE = Im[WS(rs, 3)];
84 		    TA = W[12];
85 		    TC = TA * TB;
86 		    T13 = TA * TE;
87 		    TH = Ip[WS(rs, 1)];
88 		    TK = Im[WS(rs, 1)];
89 		    TG = W[4];
90 		    TI = TG * TH;
91 		    T15 = TG * TK;
92 		    TD = W[13];
93 		    TF = FMA(TD, TE, TC);
94 		    T14 = FNMS(TD, TB, T13);
95 		    TJ = W[5];
96 		    TL = FMA(TJ, TK, TI);
97 		    T16 = FNMS(TJ, TH, T15);
98 		    T12 = TF - TL;
99 		    T17 = T14 - T16;
100 	       }
101 	       {
102 		    E To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
103 		    To = Ip[0];
104 		    Tr = Im[0];
105 		    Tn = W[0];
106 		    Tp = Tn * To;
107 		    TW = Tn * Tr;
108 		    Tu = Ip[WS(rs, 2)];
109 		    Tx = Im[WS(rs, 2)];
110 		    Tt = W[8];
111 		    Tv = Tt * Tu;
112 		    TY = Tt * Tx;
113 		    Tq = W[1];
114 		    Ts = FMA(Tq, Tr, Tp);
115 		    TX = FNMS(Tq, To, TW);
116 		    Tw = W[9];
117 		    Ty = FMA(Tw, Tx, Tv);
118 		    TZ = FNMS(Tw, Tu, TY);
119 		    TV = Ts - Ty;
120 		    T10 = TX - TZ;
121 	       }
122 	       {
123 		    E TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
124 		    {
125 			 E TO, TT, T1r, T1s;
126 			 TO = T1 - T7;
127 			 TT = TQ - TS;
128 			 TU = TO + TT;
129 			 T1a = TO - TT;
130 			 T1r = T1m - T1l;
131 			 T1s = Te - Tk;
132 			 T1t = T1r - T1s;
133 			 T1v = T1s + T1r;
134 		    }
135 		    {
136 			 E T11, T18, T1b, T1c;
137 			 T11 = TV + T10;
138 			 T18 = T12 - T17;
139 			 T19 = T11 + T18;
140 			 T1w = T18 - T11;
141 			 T1b = T10 - TV;
142 			 T1c = T12 + T17;
143 			 T1d = T1b - T1c;
144 			 T1u = T1b + T1c;
145 		    }
146 		    Rm[WS(rs, 2)] = FNMS(KP707106781, T19, TU);
147 		    Im[WS(rs, 2)] = FMS(KP707106781, T1u, T1t);
148 		    Rp[WS(rs, 1)] = FMA(KP707106781, T19, TU);
149 		    Ip[WS(rs, 1)] = FMA(KP707106781, T1u, T1t);
150 		    Rm[0] = FNMS(KP707106781, T1d, T1a);
151 		    Im[0] = FMS(KP707106781, T1w, T1v);
152 		    Rp[WS(rs, 3)] = FMA(KP707106781, T1d, T1a);
153 		    Ip[WS(rs, 3)] = FMA(KP707106781, T1w, T1v);
154 	       }
155 	       {
156 		    E Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
157 		    {
158 			 E T8, Tl, T1j, T1n;
159 			 T8 = T1 + T7;
160 			 Tl = Te + Tk;
161 			 Tm = T8 + Tl;
162 			 T1e = T8 - Tl;
163 			 T1j = TQ + TS;
164 			 T1n = T1l + T1m;
165 			 T1o = T1j + T1n;
166 			 T1q = T1n - T1j;
167 		    }
168 		    {
169 			 E Tz, TM, T1f, T1g;
170 			 Tz = Ts + Ty;
171 			 TM = TF + TL;
172 			 TN = Tz + TM;
173 			 T1p = TM - Tz;
174 			 T1f = TX + TZ;
175 			 T1g = T14 + T16;
176 			 T1h = T1f - T1g;
177 			 T1i = T1f + T1g;
178 		    }
179 		    Rm[WS(rs, 3)] = Tm - TN;
180 		    Im[WS(rs, 3)] = T1i - T1o;
181 		    Rp[0] = Tm + TN;
182 		    Ip[0] = T1i + T1o;
183 		    Rm[WS(rs, 1)] = T1e - T1h;
184 		    Im[WS(rs, 1)] = T1p - T1q;
185 		    Rp[WS(rs, 2)] = T1e + T1h;
186 		    Ip[WS(rs, 2)] = T1p + T1q;
187 	       }
188 	  }
189      }
190 }
191 
192 static const tw_instr twinstr[] = {
193      { TW_FULL, 1, 8 },
194      { TW_NEXT, 1, 0 }
195 };
196 
197 static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 44, 14, 22, 0 } };
198 
X(codelet_hc2cf_8)199 void X(codelet_hc2cf_8) (planner *p) {
200      X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT);
201 }
202 #else
203 
204 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */
205 
206 /*
207  * This function contains 66 FP additions, 32 FP multiplications,
208  * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
209  * 28 stack variables, 1 constants, and 32 memory accesses
210  */
211 #include "rdft/scalar/hc2cf.h"
212 
hc2cf_8(R * Rp,R * Ip,R * Rm,R * Im,const R * W,stride rs,INT mb,INT me,INT ms)213 static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
214 {
215      DK(KP707106781, +0.707106781186547524400844362104849039284835938);
216      {
217 	  INT m;
218 	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
219 	       E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
220 	       E TP;
221 	       {
222 		    E T1, T18, T6, T17;
223 		    T1 = Rp[0];
224 		    T18 = Rm[0];
225 		    {
226 			 E T3, T5, T2, T4;
227 			 T3 = Rp[WS(rs, 2)];
228 			 T5 = Rm[WS(rs, 2)];
229 			 T2 = W[6];
230 			 T4 = W[7];
231 			 T6 = FMA(T2, T3, T4 * T5);
232 			 T17 = FNMS(T4, T3, T2 * T5);
233 		    }
234 		    T7 = T1 + T6;
235 		    T1e = T18 - T17;
236 		    TH = T1 - T6;
237 		    T19 = T17 + T18;
238 	       }
239 	       {
240 		    E Tz, TS, TE, TT;
241 		    {
242 			 E Tw, Ty, Tv, Tx;
243 			 Tw = Ip[WS(rs, 3)];
244 			 Ty = Im[WS(rs, 3)];
245 			 Tv = W[12];
246 			 Tx = W[13];
247 			 Tz = FMA(Tv, Tw, Tx * Ty);
248 			 TS = FNMS(Tx, Tw, Tv * Ty);
249 		    }
250 		    {
251 			 E TB, TD, TA, TC;
252 			 TB = Ip[WS(rs, 1)];
253 			 TD = Im[WS(rs, 1)];
254 			 TA = W[4];
255 			 TC = W[5];
256 			 TE = FMA(TA, TB, TC * TD);
257 			 TT = FNMS(TC, TB, TA * TD);
258 		    }
259 		    TF = Tz + TE;
260 		    T13 = TS + TT;
261 		    TR = Tz - TE;
262 		    TU = TS - TT;
263 	       }
264 	       {
265 		    E Tc, TI, Th, TJ;
266 		    {
267 			 E T9, Tb, T8, Ta;
268 			 T9 = Rp[WS(rs, 1)];
269 			 Tb = Rm[WS(rs, 1)];
270 			 T8 = W[2];
271 			 Ta = W[3];
272 			 Tc = FMA(T8, T9, Ta * Tb);
273 			 TI = FNMS(Ta, T9, T8 * Tb);
274 		    }
275 		    {
276 			 E Te, Tg, Td, Tf;
277 			 Te = Rp[WS(rs, 3)];
278 			 Tg = Rm[WS(rs, 3)];
279 			 Td = W[10];
280 			 Tf = W[11];
281 			 Th = FMA(Td, Te, Tf * Tg);
282 			 TJ = FNMS(Tf, Te, Td * Tg);
283 		    }
284 		    Ti = Tc + Th;
285 		    T1f = Tc - Th;
286 		    TK = TI - TJ;
287 		    T16 = TI + TJ;
288 	       }
289 	       {
290 		    E To, TN, Tt, TO;
291 		    {
292 			 E Tl, Tn, Tk, Tm;
293 			 Tl = Ip[0];
294 			 Tn = Im[0];
295 			 Tk = W[0];
296 			 Tm = W[1];
297 			 To = FMA(Tk, Tl, Tm * Tn);
298 			 TN = FNMS(Tm, Tl, Tk * Tn);
299 		    }
300 		    {
301 			 E Tq, Ts, Tp, Tr;
302 			 Tq = Ip[WS(rs, 2)];
303 			 Ts = Im[WS(rs, 2)];
304 			 Tp = W[8];
305 			 Tr = W[9];
306 			 Tt = FMA(Tp, Tq, Tr * Ts);
307 			 TO = FNMS(Tr, Tq, Tp * Ts);
308 		    }
309 		    Tu = To + Tt;
310 		    T12 = TN + TO;
311 		    TM = To - Tt;
312 		    TP = TN - TO;
313 	       }
314 	       {
315 		    E Tj, TG, T1b, T1c;
316 		    Tj = T7 + Ti;
317 		    TG = Tu + TF;
318 		    Rm[WS(rs, 3)] = Tj - TG;
319 		    Rp[0] = Tj + TG;
320 		    {
321 			 E T15, T1a, T11, T14;
322 			 T15 = T12 + T13;
323 			 T1a = T16 + T19;
324 			 Im[WS(rs, 3)] = T15 - T1a;
325 			 Ip[0] = T15 + T1a;
326 			 T11 = T7 - Ti;
327 			 T14 = T12 - T13;
328 			 Rm[WS(rs, 1)] = T11 - T14;
329 			 Rp[WS(rs, 2)] = T11 + T14;
330 		    }
331 		    T1b = TF - Tu;
332 		    T1c = T19 - T16;
333 		    Im[WS(rs, 1)] = T1b - T1c;
334 		    Ip[WS(rs, 2)] = T1b + T1c;
335 		    {
336 			 E TX, T1g, T10, T1d, TY, TZ;
337 			 TX = TH - TK;
338 			 T1g = T1e - T1f;
339 			 TY = TP - TM;
340 			 TZ = TR + TU;
341 			 T10 = KP707106781 * (TY - TZ);
342 			 T1d = KP707106781 * (TY + TZ);
343 			 Rm[0] = TX - T10;
344 			 Ip[WS(rs, 1)] = T1d + T1g;
345 			 Rp[WS(rs, 3)] = TX + T10;
346 			 Im[WS(rs, 2)] = T1d - T1g;
347 		    }
348 		    {
349 			 E TL, T1i, TW, T1h, TQ, TV;
350 			 TL = TH + TK;
351 			 T1i = T1f + T1e;
352 			 TQ = TM + TP;
353 			 TV = TR - TU;
354 			 TW = KP707106781 * (TQ + TV);
355 			 T1h = KP707106781 * (TV - TQ);
356 			 Rm[WS(rs, 2)] = TL - TW;
357 			 Ip[WS(rs, 3)] = T1h + T1i;
358 			 Rp[WS(rs, 1)] = TL + TW;
359 			 Im[0] = T1h - T1i;
360 		    }
361 	       }
362 	  }
363      }
364 }
365 
366 static const tw_instr twinstr[] = {
367      { TW_FULL, 1, 8 },
368      { TW_NEXT, 1, 0 }
369 };
370 
371 static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 52, 18, 14, 0 } };
372 
X(codelet_hc2cf_8)373 void X(codelet_hc2cf_8) (planner *p) {
374      X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT);
375 }
376 #endif
377