1 /* mpn_mod_1s_3p (ap, n, b, cps)
2    Divide (ap,,n) by b.  Return the single-limb remainder.
3    Requires that b < B / 3.
4 
5    Contributed to the GNU project by Torbjorn Granlund.
6    Based on a suggestion by Peter L. Montgomery.
7 
8    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
9    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
10    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
11 
12 Copyright 2008-2010, 2013 Free Software Foundation, Inc.
13 
14 This file is part of the GNU MP Library.
15 
16 The GNU MP Library is free software; you can redistribute it and/or modify
17 it under the terms of either:
18 
19   * the GNU Lesser General Public License as published by the Free
20     Software Foundation; either version 3 of the License, or (at your
21     option) any later version.
22 
23 or
24 
25   * the GNU General Public License as published by the Free Software
26     Foundation; either version 2 of the License, or (at your option) any
27     later version.
28 
29 or both in parallel, as here.
30 
31 The GNU MP Library is distributed in the hope that it will be useful, but
32 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
33 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
34 for more details.
35 
36 You should have received copies of the GNU General Public License and the
37 GNU Lesser General Public License along with the GNU MP Library.  If not,
38 see https://www.gnu.org/licenses/.  */
39 
40 #include "gmp-impl.h"
41 #include "longlong.h"
42 
43 void
mpn_mod_1s_3p_cps(mp_limb_t cps[6],mp_limb_t b)44 mpn_mod_1s_3p_cps (mp_limb_t cps[6], mp_limb_t b)
45 {
46   mp_limb_t bi;
47   mp_limb_t B1modb, B2modb, B3modb, B4modb;
48   int cnt;
49 
50   ASSERT (b <= (~(mp_limb_t) 0) / 3);
51 
52   count_leading_zeros (cnt, b);
53 
54   b <<= cnt;
55   invert_limb (bi, b);
56 
57   cps[0] = bi;
58   cps[1] = cnt;
59 
60   B1modb = -b * ((bi >> (GMP_LIMB_BITS-cnt)) | (CNST_LIMB(1) << cnt));
61   ASSERT (B1modb <= b);		/* NB: not fully reduced mod b */
62   cps[2] = B1modb >> cnt;
63 
64   udiv_rnnd_preinv (B2modb, B1modb, CNST_LIMB(0), b, bi);
65   cps[3] = B2modb >> cnt;
66 
67   udiv_rnnd_preinv (B3modb, B2modb, CNST_LIMB(0), b, bi);
68   cps[4] = B3modb >> cnt;
69 
70   udiv_rnnd_preinv (B4modb, B3modb, CNST_LIMB(0), b, bi);
71   cps[5] = B4modb >> cnt;
72 
73 #if WANT_ASSERT
74   {
75     int i;
76     b = cps[2];
77     for (i = 3; i <= 5; i++)
78       {
79 	b += cps[i];
80 	ASSERT (b >= cps[i]);
81       }
82   }
83 #endif
84 }
85 
86 mp_limb_t
mpn_mod_1s_3p(mp_srcptr ap,mp_size_t n,mp_limb_t b,const mp_limb_t cps[6])87 mpn_mod_1s_3p (mp_srcptr ap, mp_size_t n, mp_limb_t b, const mp_limb_t cps[6])
88 {
89   mp_limb_t rh, rl, bi, ph, pl, ch, cl, r;
90   mp_limb_t B1modb, B2modb, B3modb, B4modb;
91   mp_size_t i;
92   int cnt;
93 
94   ASSERT (n >= 1);
95 
96   B1modb = cps[2];
97   B2modb = cps[3];
98   B3modb = cps[4];
99   B4modb = cps[5];
100 
101   /* We compute n mod 3 in a tricky way, which works except for when n is so
102      close to the maximum size that we don't need to support it.  The final
103      cast to int is a workaround for HP cc.  */
104   switch ((int) ((mp_limb_t) n * MODLIMB_INVERSE_3 >> (GMP_NUMB_BITS - 2)))
105     {
106     case 0:
107       umul_ppmm (ph, pl, ap[n - 2], B1modb);
108       add_ssaaaa (ph, pl, ph, pl, CNST_LIMB(0), ap[n - 3]);
109       umul_ppmm (rh, rl, ap[n - 1], B2modb);
110       add_ssaaaa (rh, rl, rh, rl, ph, pl);
111       n -= 3;
112       break;
113     case 2:	/* n mod 3 = 1 */
114       rh = 0;
115       rl = ap[n - 1];
116       n -= 1;
117       break;
118     case 1:	/* n mod 3 = 2 */
119       rh = ap[n - 1];
120       rl = ap[n - 2];
121       n -= 2;
122       break;
123     }
124 
125   for (i = n - 3; i >= 0; i -= 3)
126     {
127       /* rr = ap[i]				< B
128 	    + ap[i+1] * (B mod b)		<= (B-1)(b-1)
129 	    + ap[i+2] * (B^2 mod b)		<= (B-1)(b-1)
130 	    + LO(rr)  * (B^3 mod b)		<= (B-1)(b-1)
131 	    + HI(rr)  * (B^4 mod b)		<= (B-1)(b-1)
132       */
133       umul_ppmm (ph, pl, ap[i + 1], B1modb);
134       add_ssaaaa (ph, pl, ph, pl, CNST_LIMB(0), ap[i + 0]);
135 
136       umul_ppmm (ch, cl, ap[i + 2], B2modb);
137       add_ssaaaa (ph, pl, ph, pl, ch, cl);
138 
139       umul_ppmm (ch, cl, rl, B3modb);
140       add_ssaaaa (ph, pl, ph, pl, ch, cl);
141 
142       umul_ppmm (rh, rl, rh, B4modb);
143       add_ssaaaa (rh, rl, rh, rl, ph, pl);
144     }
145 
146   umul_ppmm (rh, cl, rh, B1modb);
147   add_ssaaaa (rh, rl, rh, rl, CNST_LIMB(0), cl);
148 
149   cnt = cps[1];
150   bi = cps[0];
151 
152   r = (rh << cnt) | (rl >> (GMP_LIMB_BITS - cnt));
153   udiv_rnnd_preinv (r, r, rl << cnt, b, bi);
154 
155   return r >> cnt;
156 }
157