1 /*  -- translated by f2c (version 20191129).
2    You must link the resulting object file with libf2c:
3 	on Microsoft Windows system, link with libf2c.lib;
4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
6 	-- in that order, at the end of the command line, as in
7 		cc *.o -lf2c -lm
8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10 		http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "f2c.h"
14 
15 /* Table of constant values */
16 
17 static doublereal c_b3 = .66666666666666663;
18 static integer c__1 = 1;
19 static doublereal c_b44 = 0.;
20 static doublereal c_b45 = 1.;
21 static logical c_true = TRUE_;
22 static doublereal c_b71 = -1.;
23 
24 /* \BeginDoc
25 
26    \Name: dneupd
27 
28    \Description:
29 
30     This subroutine returns the converged approximations to eigenvalues
31     of A*z = lambda*B*z and (optionally):
32 
33         (1) The corresponding approximate eigenvectors;
34 
35         (2) An orthonormal basis for the associated approximate
36             invariant subspace;
37 
38         (3) Both.
39 
40     There is negligible additional cost to obtain eigenvectors.  An orthonormal
41     basis is always computed.  There is an additional storage cost of n*nev
42     if both are requested (in this case a separate array Z must be supplied).
43 
44     The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
45     are derived from approximate eigenvalues and eigenvectors of
46     of the linear operator OP prescribed by the MODE selection in the
47     call to DNAUPD.  DNAUPD must be called before this routine is called.
48     These approximate eigenvalues and vectors are commonly called Ritz
49     values and Ritz vectors respectively.  They are referred to as such
50     in the comments that follow.  The computed orthonormal basis for the
51     invariant subspace corresponding to these Ritz values is referred to as a
52     Schur basis.
53 
54     See documentation in the header of the subroutine DNAUPD for
55     definition of OP as well as other terms and the relation of computed
56     Ritz values and Ritz vectors of OP with respect to the given problem
57     A*z = lambda*B*z.  For a brief description, see definitions of
58     IPARAM(7), MODE and WHICH in the documentation of DNAUPD.
59 
60    \Usage:
61     call dneupd
62        ( RVEC, HOWMNY, SELECT, DR, DI, Z, LDZ, SIGMAR, SIGMAI, WORKEV, BMAT,
63          N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL,
64          LWORKL, INFO )
65 
66    \Arguments:
67     RVEC    LOGICAL  (INPUT)
68             Specifies whether a basis for the invariant subspace corresponding
69             to the converged Ritz value approximations for the eigenproblem
70             A*z = lambda*B*z is computed.
71 
72                RVEC = .FALSE.     Compute Ritz values only.
73 
74                RVEC = .TRUE.      Compute the Ritz vectors or Schur vectors.
75                                   See Remarks below.
76 
77     HOWMNY  Character*1  (INPUT)
78             Specifies the form of the basis for the invariant subspace
79             corresponding to the converged Ritz values that is to be computed.
80 
81             = 'A': Compute NEV Ritz vectors;
82             = 'P': Compute NEV Schur vectors;
83             = 'S': compute some of the Ritz vectors, specified
84                    by the logical array SELECT.
85 
86     SELECT  Logical array of dimension NCV.  (INPUT)
87             If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
88             computed. To select the Ritz vector corresponding to a
89             Ritz value (DR(j), DI(j)), SELECT(j) must be set to .TRUE..
90             If HOWMNY = 'A' or 'P', SELECT is used as internal workspace.
91 
92     DR      Double precision array of dimension NEV+1.  (OUTPUT)
93             If IPARAM(7) = 1,2 or 3 and SIGMAI=0.0  then on exit: DR contains
94             the real part of the Ritz  approximations to the eigenvalues of
95             A*z = lambda*B*z.
96             If IPARAM(7) = 3, 4 and SIGMAI is not equal to zero, then on exit:
97             DR contains the real part of the Ritz values of OP computed by
98             DNAUPD. A further computation must be performed by the user
99             to transform the Ritz values computed for OP by DNAUPD to those
100             of the original system A*z = lambda*B*z. See remark 3 below.
101 
102     DI      Double precision array of dimension NEV+1.  (OUTPUT)
103             On exit, DI contains the imaginary part of the Ritz value
104             approximations to the eigenvalues of A*z = lambda*B*z associated
105             with DR.
106 
107             NOTE: When Ritz values are complex, they will come in complex
108                   conjugate pairs.  If eigenvectors are requested, the
109                   corresponding Ritz vectors will also come in conjugate
110                   pairs and the real and imaginary parts of these are
111                   represented in two consecutive columns of the array Z
112                   (see below).
113 
114     Z       Double precision N by NEV+1 array if RVEC = .TRUE. and HOWMNY = 'A'. (OUTPUT)
115             On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of
116             Z represent approximate eigenvectors (Ritz vectors) corresponding
117             to the NCONV=IPARAM(5) Ritz values for eigensystem
118             A*z = lambda*B*z.
119 
120             The complex Ritz vector associated with the Ritz value
121             with positive imaginary part is stored in two consecutive
122             columns.  The first column holds the real part of the Ritz
123             vector and the second column holds the imaginary part.  The
124             Ritz vector associated with the Ritz value with negative
125             imaginary part is simply the complex conjugate of the Ritz vector
126             associated with the positive imaginary part.
127 
128             If  RVEC = .FALSE. or HOWMNY = 'P', then Z is not referenced.
129 
130             NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
131             the array Z may be set equal to first NEV+1 columns of the Arnoldi
132             basis array V computed by DNAUPD.  In this case the Arnoldi basis
133             will be destroyed and overwritten with the eigenvector basis.
134 
135     LDZ     Integer.  (INPUT)
136             The leading dimension of the array Z.  If Ritz vectors are
137             desired, then  LDZ >= max( 1, N ).  In any case,  LDZ >= 1.
138 
139     SIGMAR  Double precision  (INPUT)
140             If IPARAM(7) = 3 or 4, represents the real part of the shift.
141             Not referenced if IPARAM(7) = 1 or 2.
142 
143     SIGMAI  Double precision  (INPUT)
144             If IPARAM(7) = 3 or 4, represents the imaginary part of the shift.
145             Not referenced if IPARAM(7) = 1 or 2. See remark 3 below.
146 
147     WORKEV  Double precision work array of dimension 3*NCV.  (WORKSPACE)
148 
149     **** The remaining arguments MUST be the same as for the   ****
150     **** call to DNAUPD that was just completed.               ****
151 
152     NOTE: The remaining arguments
153 
154              BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
155              WORKD, WORKL, LWORKL, INFO
156 
157            must be passed directly to DNEUPD following the last call
158            to DNAUPD.  These arguments MUST NOT BE MODIFIED between
159            the the last call to DNAUPD and the call to DNEUPD.
160 
161     Three of these parameters (V, WORKL, INFO) are also output parameters:
162 
163     V       Double precision N by NCV array.  (INPUT/OUTPUT)
164 
165             Upon INPUT: the NCV columns of V contain the Arnoldi basis
166                         vectors for OP as constructed by DNAUPD .
167 
168             Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
169                          contain approximate Schur vectors that span the
170                          desired invariant subspace.  See Remark 2 below.
171 
172             NOTE: If the array Z has been set equal to first NEV+1 columns
173             of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
174             Arnoldi basis held by V has been overwritten by the desired
175             Ritz vectors.  If a separate array Z has been passed then
176             the first NCONV=IPARAM(5) columns of V will contain approximate
177             Schur vectors that span the desired invariant subspace.
178 
179     WORKL   Double precision work array of length LWORKL.  (OUTPUT/WORKSPACE)
180             WORKL(1:ncv*ncv+3*ncv) contains information obtained in
181             dnaupd.  They are not changed by dneupd.
182             WORKL(ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) holds the
183             real and imaginary part of the untransformed Ritz values,
184             the upper quasi-triangular matrix for H, and the
185             associated matrix representation of the invariant subspace for H.
186 
187             Note: IPNTR(9:13) contains the pointer into WORKL for addresses
188             of the above information computed by dneupd.
189             -------------------------------------------------------------
190             IPNTR(9):  pointer to the real part of the NCV RITZ values of the
191                        original system.
192             IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
193                        the original system.
194             IPNTR(11): pointer to the NCV corresponding error bounds.
195             IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
196                        Schur matrix for H.
197             IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
198                        of the upper Hessenberg matrix H. Only referenced by
199                        dneupd if RVEC = .TRUE. See Remark 2 below.
200             -------------------------------------------------------------
201 
202     INFO    Integer.  (OUTPUT)
203             Error flag on output.
204 
205             =  0: Normal exit.
206 
207             =  1: The Schur form computed by LAPACK routine dlahqr
208                   could not be reordered by LAPACK routine dtrsen.
209                   Re-enter subroutine dneupd with IPARAM(5)=NCV and
210                   increase the size of the arrays DR and DI to have
211                   dimension at least dimension NCV and allocate at least NCV
212                   columns for Z. NOTE: Not necessary if Z and V share
213                   the same space. Please notify the authors if this error
214                   occurs.
215 
216             = -1: N must be positive.
217             = -2: NEV must be positive.
218             = -3: NCV-NEV >= 2 and less than or equal to N.
219             = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
220             = -6: BMAT must be one of 'I' or 'G'.
221             = -7: Length of private work WORKL array is not sufficient.
222             = -8: Error return from calculation of a real Schur form.
223                   Informational error from LAPACK routine dlahqr.
224             = -9: Error return from calculation of eigenvectors.
225                   Informational error from LAPACK routine dtrevc.
226             = -10: IPARAM(7) must be 1,2,3,4.
227             = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
228             = -12: HOWMNY = 'S' not yet implemented
229             = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
230             = -14: DNAUPD did not find any eigenvalues to sufficient
231                    accuracy.
232 
233    \BeginLib
234 
235    \References:
236     1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
237        a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
238        pp 357-385.
239     2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
240        Restarted Arnoldi Iteration", Rice University Technical Report
241        TR95-13, Department of Computational and Applied Mathematics.
242     3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
243        Real Matrices", Linear Algebra and its Applications, vol 88/89,
244        pp 575-595, (1987).
245 
246    \Routines called:
247        ivout   ARPACK utility routine that prints integers.
248        dmout   ARPACK utility routine that prints matrices
249        dvout   ARPACK utility routine that prints vectors.
250        dgeqr2  LAPACK routine that computes the QR factorization of
251                a matrix.
252        dlacpy  LAPACK matrix copy routine.
253        dlahqr  LAPACK routine to compute the real Schur form of an
254                upper Hessenberg matrix.
255        dlamch  LAPACK routine that determines machine constants.
256        dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
257        dlaset  LAPACK matrix initialization routine.
258        dorm2r  LAPACK routine that applies an orthogonal matrix in
259                factored form.
260        dtrevc  LAPACK routine to compute the eigenvectors of a matrix
261                in upper quasi-triangular form.
262        dtrsen  LAPACK routine that re-orders the Schur form.
263        dtrmm   Level 3 BLAS matrix times an upper triangular matrix.
264        dger    Level 2 BLAS rank one update to a matrix.
265        dcopy   Level 1 BLAS that copies one vector to another .
266        ddot    Level 1 BLAS that computes the scalar product of two vectors.
267        dnrm2   Level 1 BLAS that computes the norm of a vector.
268        dscal   Level 1 BLAS that scales a vector.
269 
270    \Remarks
271 
272     1. Currently only HOWMNY = 'A' and 'P' are implemented.
273 
274        Let X' denote the transpose of X.
275 
276     2. Schur vectors are an orthogonal representation for the basis of
277        Ritz vectors. Thus, their numerical properties are often superior.
278        If RVEC = .TRUE. then the relationship
279                A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
280        V(:,1:IPARAM(5))' * V(:,1:IPARAM(5)) = I are approximately satisfied.
281        Here T is the leading submatrix of order IPARAM(5) of the real
282        upper quasi-triangular matrix stored workl(ipntr(12)). That is,
283        T is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
284        each 2-by-2 diagonal block has its diagonal elements equal and its
285        off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
286        diagonal block is a complex conjugate pair of Ritz values. The real
287        Ritz values are stored on the diagonal of T.
288 
289     3. If IPARAM(7) = 3 or 4 and SIGMAI is not equal zero, then the user must
290        form the IPARAM(5) Rayleigh quotients in order to transform the Ritz
291        values computed by DNAUPD for OP to those of A*z = lambda*B*z.
292        Set RVEC = .true. and HOWMNY = 'A', and
293        compute
294              Z(:,I)' * A * Z(:,I) if DI(I) = 0.
295        If DI(I) is not equal to zero and DI(I+1) = - D(I),
296        then the desired real and imaginary parts of the Ritz value are
297              Z(:,I)' * A * Z(:,I) +  Z(:,I+1)' * A * Z(:,I+1),
298              Z(:,I)' * A * Z(:,I+1) -  Z(:,I+1)' * A * Z(:,I), respectively.
299        Another possibility is to set RVEC = .true. and HOWMNY = 'P' and
300        compute V(:,1:IPARAM(5))' * A * V(:,1:IPARAM(5)) and then an upper
301        quasi-triangular matrix of order IPARAM(5) is computed. See remark
302        2 above.
303 
304    \Authors
305        Danny Sorensen               Phuong Vu
306        Richard Lehoucq              CRPC / Rice University
307        Chao Yang                    Houston, Texas
308        Dept. of Computational &
309        Applied Mathematics
310        Rice University
311        Houston, Texas
312 
313    \SCCS Information: @(#)
314    FILE: neupd.F   SID: 2.5   DATE OF SID: 7/31/96   RELEASE: 2
315 
316    \EndLib
317 
318    -----------------------------------------------------------------------
igraphdneupd_(logical * rvec,char * howmny,logical * select,doublereal * dr,doublereal * di,doublereal * z__,integer * ldz,doublereal * sigmar,doublereal * sigmai,doublereal * workev,char * bmat,integer * n,char * which,integer * nev,doublereal * tol,doublereal * resid,integer * ncv,doublereal * v,integer * ldv,integer * iparam,integer * ipntr,doublereal * workd,doublereal * workl,integer * lworkl,integer * info)319    Subroutine */ int igraphdneupd_(logical *rvec, char *howmny, logical *select,
320 	doublereal *dr, doublereal *di, doublereal *z__, integer *ldz,
321 	doublereal *sigmar, doublereal *sigmai, doublereal *workev, char *
322 	bmat, integer *n, char *which, integer *nev, doublereal *tol,
323 	doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer
324 	*iparam, integer *ipntr, doublereal *workd, doublereal *workl,
325 	integer *lworkl, integer *info)
326 {
327     /* System generated locals */
328     integer v_dim1, v_offset, z_dim1, z_offset, i__1;
329     doublereal d__1, d__2;
330 
331     /* Builtin functions */
332     double pow_dd(doublereal *, doublereal *);
333     integer s_cmp(char *, char *, ftnlen, ftnlen);
334     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
335 
336     /* Local variables */
337     integer j, k, ih;
338     doublereal vl[1]	/* was [1][1] */;
339     integer ibd, ldh, ldq, iri;
340     doublereal sep;
341     integer irr, wri, wrr;
342     extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *,
343 	    doublereal *, integer *, doublereal *, integer *, doublereal *,
344 	    integer *);
345     integer mode;
346     doublereal eps23;
347     integer ierr;
348     doublereal temp;
349     integer iwev;
350     char type__[6];
351     extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
352     doublereal temp1;
353     extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *,
354 	    integer *);
355     integer ihbds, iconj;
356     extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *,
357 	    doublereal *, doublereal *, integer *, doublereal *, integer *,
358 	    doublereal *, doublereal *, integer *);
359     doublereal conds;
360     logical reord;
361     extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *,
362 	    doublereal *, integer *);
363     integer nconv;
364     extern /* Subroutine */ int igraphdtrmm_(char *, char *, char *, char *,
365 	    integer *, integer *, doublereal *, doublereal *, integer *,
366 	    doublereal *, integer *);
367     doublereal thres;
368     extern /* Subroutine */ int igraphdmout_(integer *, integer *, integer *,
369 	    doublereal *, integer *, integer *, char *, ftnlen);
370     integer iwork[1];
371     doublereal rnorm;
372     integer ritzi;
373     extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *,
374 	    integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer *
375 	    , integer *, char *, ftnlen);
376     integer ritzr;
377     extern /* Subroutine */ int igraphdgeqr2_(integer *, integer *, doublereal *,
378 	    integer *, doublereal *, doublereal *, integer *);
379     extern doublereal igraphdlapy2_(doublereal *, doublereal *);
380     extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *,
381 	    integer *, doublereal *, integer *, doublereal *, doublereal *,
382 	    integer *, doublereal *, integer *);
383     extern doublereal igraphdlamch_(char *);
384     integer iheigi, iheigr;
385     extern /* Subroutine */ int igraphdlahqr_(logical *, logical *, integer *,
386 	    integer *, integer *, doublereal *, integer *, doublereal *,
387 	    doublereal *, integer *, integer *, doublereal *, integer *,
388 	    integer *), igraphdlacpy_(char *, integer *, integer *, doublereal *,
389 	    integer *, doublereal *, integer *), igraphdlaset_(char *,
390 	    integer *, integer *, doublereal *, doublereal *, doublereal *,
391 	    integer *);
392     integer logfil, ndigit;
393     extern /* Subroutine */ int igraphdtrevc_(char *, char *, logical *, integer *,
394 	    doublereal *, integer *, doublereal *, integer *, doublereal *,
395 	    integer *, integer *, integer *, doublereal *, integer *);
396     integer mneupd = 0, bounds;
397     extern /* Subroutine */ int igraphdtrsen_(char *, char *, logical *, integer *,
398 	    doublereal *, integer *, doublereal *, integer *, doublereal *,
399 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
400 	     integer *, integer *, integer *, integer *);
401     integer msglvl, ktrord, invsub, iuptri, outncv;
402 
403 
404 /*     %----------------------------------------------------%
405        | Include files for debugging and timing information |
406        %----------------------------------------------------%
407 
408 
409        %------------------%
410        | Scalar Arguments |
411        %------------------%
412 
413 
414        %-----------------%
415        | Array Arguments |
416        %-----------------%
417 
418 
419        %------------%
420        | Parameters |
421        %------------%
422 
423 
424        %---------------%
425        | Local Scalars |
426        %---------------%
427 
428 
429        %----------------------%
430        | External Subroutines |
431        %----------------------%
432 
433 
434        %--------------------%
435        | External Functions |
436        %--------------------%
437 
438 
439        %---------------------%
440        | Intrinsic Functions |
441        %---------------------%
442 
443 
444        %-----------------------%
445        | Executable Statements |
446        %-----------------------%
447 
448        %------------------------%
449        | Set default parameters |
450        %------------------------%
451 
452        Parameter adjustments */
453     z_dim1 = *ldz;
454     z_offset = 1 + z_dim1;
455     z__ -= z_offset;
456     --workd;
457     --resid;
458     --di;
459     --dr;
460     --workev;
461     --select;
462     v_dim1 = *ldv;
463     v_offset = 1 + v_dim1;
464     v -= v_offset;
465     --iparam;
466     --ipntr;
467     --workl;
468 
469     /* Function Body */
470     msglvl = mneupd;
471     mode = iparam[7];
472     nconv = iparam[5];
473     *info = 0;
474 
475 /*     %---------------------------------%
476        | Get machine dependent constant. |
477        %---------------------------------% */
478 
479     eps23 = igraphdlamch_("Epsilon-Machine");
480     eps23 = pow_dd(&eps23, &c_b3);
481 
482 /*     %--------------%
483        | Quick return |
484        %--------------% */
485 
486     ierr = 0;
487 
488     if (nconv <= 0) {
489 	ierr = -14;
490     } else if (*n <= 0) {
491 	ierr = -1;
492     } else if (*nev <= 0) {
493 	ierr = -2;
494     } else if (*ncv <= *nev + 1 || *ncv > *n) {
495 	ierr = -3;
496     } else if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which,
497 	    "SM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LR", (ftnlen)2,
498 	    (ftnlen)2) != 0 && s_cmp(which, "SR", (ftnlen)2, (ftnlen)2) != 0
499 	    && s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which,
500 	    "SI", (ftnlen)2, (ftnlen)2) != 0) {
501 	ierr = -5;
502     } else if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G')
503 	     {
504 	ierr = -6;
505     } else /* if(complicated condition) */ {
506 /* Computing 2nd power */
507 	i__1 = *ncv;
508 	if (*lworkl < i__1 * i__1 * 3 + *ncv * 6) {
509 	    ierr = -7;
510 	} else if (*(unsigned char *)howmny != 'A' && *(unsigned char *)
511 		howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) {
512 	    ierr = -13;
513 	} else if (*(unsigned char *)howmny == 'S') {
514 	    ierr = -12;
515 	}
516     }
517 
518     if (mode == 1 || mode == 2) {
519 	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
520     } else if (mode == 3 && *sigmai == 0.) {
521 	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
522     } else if (mode == 3) {
523 	s_copy(type__, "REALPT", (ftnlen)6, (ftnlen)6);
524     } else if (mode == 4) {
525 	s_copy(type__, "IMAGPT", (ftnlen)6, (ftnlen)6);
526     } else {
527 	ierr = -10;
528     }
529     if (mode == 1 && *(unsigned char *)bmat == 'G') {
530 	ierr = -11;
531     }
532 
533 /*     %------------%
534        | Error Exit |
535        %------------% */
536 
537     if (ierr != 0) {
538 	*info = ierr;
539 	goto L9000;
540     }
541 
542 /*     %--------------------------------------------------------%
543        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q   |
544        | etc... and the remaining workspace.                    |
545        | Also update pointer to be used on output.              |
546        | Memory is laid out as follows:                         |
547        | workl(1:ncv*ncv) := generated Hessenberg matrix        |
548        | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary   |
549        |                                   parts of ritz values |
550        | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds   |
551        %--------------------------------------------------------%
552 
553        %-----------------------------------------------------------%
554        | The following is used and set by DNEUPD.                  |
555        | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
556        |                             real part of the Ritz values. |
557        | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed |
558        |                        imaginary part of the Ritz values. |
559        | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed |
560        |                           error bounds of the Ritz values |
561        | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper |
562        |                             quasi-triangular matrix for H |
563        | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the    |
564        |       associated matrix representation of the invariant   |
565        |       subspace for H.                                     |
566        | GRAND total of NCV * ( 3 * NCV + 6 ) locations.           |
567        %-----------------------------------------------------------% */
568 
569     ih = ipntr[5];
570     ritzr = ipntr[6];
571     ritzi = ipntr[7];
572     bounds = ipntr[8];
573     ldh = *ncv;
574     ldq = *ncv;
575     iheigr = bounds + ldh;
576     iheigi = iheigr + ldh;
577     ihbds = iheigi + ldh;
578     iuptri = ihbds + ldh;
579     invsub = iuptri + ldh * *ncv;
580     ipntr[9] = iheigr;
581     ipntr[10] = iheigi;
582     ipntr[11] = ihbds;
583     ipntr[12] = iuptri;
584     ipntr[13] = invsub;
585     wrr = 1;
586     wri = *ncv + 1;
587     iwev = wri + *ncv;
588 
589 /*     %-----------------------------------------%
590        | irr points to the REAL part of the Ritz |
591        |     values computed by _neigh before    |
592        |     exiting _naup2.                     |
593        | iri points to the IMAGINARY part of the |
594        |     Ritz values computed by _neigh      |
595        |     before exiting _naup2.              |
596        | ibd points to the Ritz estimates        |
597        |     computed by _neigh before exiting   |
598        |     _naup2.                             |
599        %-----------------------------------------% */
600 
601     irr = ipntr[14] + *ncv * *ncv;
602     iri = irr + *ncv;
603     ibd = iri + *ncv;
604 
605 /*     %------------------------------------%
606        | RNORM is B-norm of the RESID(1:N). |
607        %------------------------------------% */
608 
609     rnorm = workl[ih + 2];
610     workl[ih + 2] = 0.;
611 
612     if (*rvec) {
613 
614 /*        %-------------------------------------------%
615           | Get converged Ritz value on the boundary. |
616           | Note: converged Ritz values have been     |
617           | placed in the first NCONV locations in    |
618           | workl(ritzr) and workl(ritzi).  They have |
619           | been sorted (in _naup2) according to the  |
620           | WHICH selection criterion.                |
621           %-------------------------------------------% */
622 
623 	if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which,
624 		"SM", (ftnlen)2, (ftnlen)2) == 0) {
625 	    thres = igraphdlapy2_(&workl[ritzr], &workl[ritzi]);
626 	} else if (s_cmp(which, "LR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
627 		which, "SR", (ftnlen)2, (ftnlen)2) == 0) {
628 	    thres = workl[ritzr];
629 	} else if (s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
630 		which, "SI", (ftnlen)2, (ftnlen)2) == 0) {
631 	    thres = (d__1 = workl[ritzi], abs(d__1));
632 	}
633 
634 	if (msglvl > 2) {
635 	    igraphdvout_(&logfil, &c__1, &thres, &ndigit, "_neupd: Threshold eigen"
636 		    "value used for re-ordering", (ftnlen)49);
637 	}
638 
639 /*        %----------------------------------------------------------%
640           | Check to see if all converged Ritz values appear at the  |
641           | top of the upper quasi-triangular matrix computed by     |
642           | _neigh in _naup2.  This is done in the following way:    |
643           |                                                          |
644           | 1) For each Ritz value obtained from _neigh, compare it  |
645           |    with the threshold Ritz value computed above to       |
646           |    determine whether it is a wanted one.                 |
647           |                                                          |
648           | 2) If it is wanted, then check the corresponding Ritz    |
649           |    estimate to see if it has converged.  If it has, set  |
650           |    correponding entry in the logical array SELECT to     |
651           |    .TRUE..                                               |
652           |                                                          |
653           | If SELECT(j) = .TRUE. and j > NCONV, then there is a     |
654           | converged Ritz value that does not appear at the top of  |
655           | the upper quasi-triangular matrix computed by _neigh in  |
656           | _naup2.  Reordering is needed.                           |
657           %----------------------------------------------------------% */
658 
659 	reord = FALSE_;
660 	ktrord = 0;
661 	i__1 = *ncv - 1;
662 	for (j = 0; j <= i__1; ++j) {
663 	    select[j + 1] = FALSE_;
664 	    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) {
665 		if (igraphdlapy2_(&workl[irr + j], &workl[iri + j]) >= thres) {
666 /* Computing MAX */
667 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
668 			    + j]);
669 		    temp1 = max(d__1,d__2);
670 		    if (workl[ibd + j] <= *tol * temp1) {
671 			select[j + 1] = TRUE_;
672 		    }
673 		}
674 	    } else if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) {
675 		if (igraphdlapy2_(&workl[irr + j], &workl[iri + j]) <= thres) {
676 /* Computing MAX */
677 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
678 			    + j]);
679 		    temp1 = max(d__1,d__2);
680 		    if (workl[ibd + j] <= *tol * temp1) {
681 			select[j + 1] = TRUE_;
682 		    }
683 		}
684 	    } else if (s_cmp(which, "LR", (ftnlen)2, (ftnlen)2) == 0) {
685 		if (workl[irr + j] >= thres) {
686 /* Computing MAX */
687 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
688 			    + j]);
689 		    temp1 = max(d__1,d__2);
690 		    if (workl[ibd + j] <= *tol * temp1) {
691 			select[j + 1] = TRUE_;
692 		    }
693 		}
694 	    } else if (s_cmp(which, "SR", (ftnlen)2, (ftnlen)2) == 0) {
695 		if (workl[irr + j] <= thres) {
696 /* Computing MAX */
697 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
698 			    + j]);
699 		    temp1 = max(d__1,d__2);
700 		    if (workl[ibd + j] <= *tol * temp1) {
701 			select[j + 1] = TRUE_;
702 		    }
703 		}
704 	    } else if (s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) == 0) {
705 		if ((d__1 = workl[iri + j], abs(d__1)) >= thres) {
706 /* Computing MAX */
707 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
708 			    + j]);
709 		    temp1 = max(d__1,d__2);
710 		    if (workl[ibd + j] <= *tol * temp1) {
711 			select[j + 1] = TRUE_;
712 		    }
713 		}
714 	    } else if (s_cmp(which, "SI", (ftnlen)2, (ftnlen)2) == 0) {
715 		if ((d__1 = workl[iri + j], abs(d__1)) <= thres) {
716 /* Computing MAX */
717 		    d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + j], &workl[iri
718 			    + j]);
719 		    temp1 = max(d__1,d__2);
720 		    if (workl[ibd + j] <= *tol * temp1) {
721 			select[j + 1] = TRUE_;
722 		    }
723 		}
724 	    }
725 	    if (j + 1 > nconv) {
726 		reord = select[j + 1] || reord;
727 	    }
728 	    if (select[j + 1]) {
729 		++ktrord;
730 	    }
731 /* L10: */
732 	}
733 
734 	if (msglvl > 2) {
735 	    igraphivout_(&logfil, &c__1, &ktrord, &ndigit, "_neupd: Number of spec"
736 		    "ified eigenvalues", (ftnlen)39);
737 	    igraphivout_(&logfil, &c__1, &nconv, &ndigit, "_neupd: Number of \"con"
738 		    "verged\" eigenvalues", (ftnlen)41);
739 	}
740 
741 /*        %-----------------------------------------------------------%
742           | Call LAPACK routine dlahqr to compute the real Schur form |
743           | of the upper Hessenberg matrix returned by DNAUPD.        |
744           | Make a copy of the upper Hessenberg matrix.               |
745           | Initialize the Schur vector matrix Q to the identity.     |
746           %-----------------------------------------------------------% */
747 
748 	i__1 = ldh * *ncv;
749 	igraphdcopy_(&i__1, &workl[ih], &c__1, &workl[iuptri], &c__1);
750 	igraphdlaset_("All", ncv, ncv, &c_b44, &c_b45, &workl[invsub], &ldq);
751 	igraphdlahqr_(&c_true, &c_true, ncv, &c__1, ncv, &workl[iuptri], &ldh, &
752 		workl[iheigr], &workl[iheigi], &c__1, ncv, &workl[invsub], &
753 		ldq, &ierr);
754 	igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);
755 
756 	if (ierr != 0) {
757 	    *info = -8;
758 	    goto L9000;
759 	}
760 
761 	if (msglvl > 1) {
762 	    igraphdvout_(&logfil, ncv, &workl[iheigr], &ndigit, "_neupd: Real part"
763 		    " of the eigenvalues of H", (ftnlen)41);
764 	    igraphdvout_(&logfil, ncv, &workl[iheigi], &ndigit, "_neupd: Imaginary"
765 		    " part of the Eigenvalues of H", (ftnlen)46);
766 	    igraphdvout_(&logfil, ncv, &workl[ihbds], &ndigit, "_neupd: Last row o"
767 		    "f the Schur vector matrix", (ftnlen)43);
768 	    if (msglvl > 3) {
769 		igraphdmout_(&logfil, ncv, ncv, &workl[iuptri], &ldh, &ndigit,
770 			"_neupd: The upper quasi-triangular matrix ", (ftnlen)
771 			42);
772 	    }
773 	}
774 
775 	if (reord) {
776 
777 /*           %-----------------------------------------------------%
778              | Reorder the computed upper quasi-triangular matrix. |
779              %-----------------------------------------------------% */
780 
781 	    igraphdtrsen_("None", "V", &select[1], ncv, &workl[iuptri], &ldh, &
782 		    workl[invsub], &ldq, &workl[iheigr], &workl[iheigi], &
783 		    nconv, &conds, &sep, &workl[ihbds], ncv, iwork, &c__1, &
784 		    ierr);
785 
786 	    if (ierr == 1) {
787 		*info = 1;
788 		goto L9000;
789 	    }
790 
791 	    if (msglvl > 2) {
792 		igraphdvout_(&logfil, ncv, &workl[iheigr], &ndigit, "_neupd: Real "
793 			"part of the eigenvalues of H--reordered", (ftnlen)52);
794 		igraphdvout_(&logfil, ncv, &workl[iheigi], &ndigit, "_neupd: Imag "
795 			"part of the eigenvalues of H--reordered", (ftnlen)52);
796 		if (msglvl > 3) {
797 		    igraphdmout_(&logfil, ncv, ncv, &workl[iuptri], &ldq, &ndigit,
798 			    "_neupd: Quasi-triangular matrix after re-orderi"
799 			    "ng", (ftnlen)49);
800 		}
801 	    }
802 
803 	}
804 
805 /*        %---------------------------------------%
806           | Copy the last row of the Schur vector |
807           | into workl(ihbds).  This will be used |
808           | to compute the Ritz estimates of      |
809           | converged Ritz values.                |
810           %---------------------------------------% */
811 
812 	igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);
813 
814 /*        %----------------------------------------------------%
815           | Place the computed eigenvalues of H into DR and DI |
816           | if a spectral transformation was not used.         |
817           %----------------------------------------------------% */
818 
819 	if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {
820 	    igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
821 	    igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);
822 	}
823 
824 /*        %----------------------------------------------------------%
825           | Compute the QR factorization of the matrix representing  |
826           | the wanted invariant subspace located in the first NCONV |
827           | columns of workl(invsub,ldq).                            |
828           %----------------------------------------------------------% */
829 
830 	igraphdgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*ncv +
831 		1], &ierr);
832 
833 /*        %---------------------------------------------------------%
834           | * Postmultiply V by Q using dorm2r.                     |
835           | * Copy the first NCONV columns of VQ into Z.            |
836           | * Postmultiply Z by R.                                  |
837           | The N by NCONV matrix Z is now a matrix representation  |
838           | of the approximate invariant subspace associated with   |
839           | the Ritz values in workl(iheigr) and workl(iheigi)      |
840           | The first NCONV columns of V are now approximate Schur  |
841           | vectors associated with the real upper quasi-triangular |
842           | matrix of order NCONV in workl(iuptri)                  |
843           %---------------------------------------------------------% */
844 
845 	igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &ldq,
846 		&workev[1], &v[v_offset], ldv, &workd[*n + 1], &ierr);
847 	igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz);
848 
849 	i__1 = nconv;
850 	for (j = 1; j <= i__1; ++j) {
851 
852 /*           %---------------------------------------------------%
853              | Perform both a column and row scaling if the      |
854              | diagonal element of workl(invsub,ldq) is negative |
855              | I'm lazy and don't take advantage of the upper    |
856              | quasi-triangular form of workl(iuptri,ldq)        |
857              | Note that since Q is orthogonal, R is a diagonal  |
858              | matrix consisting of plus or minus ones           |
859              %---------------------------------------------------% */
860 
861 	    if (workl[invsub + (j - 1) * ldq + j - 1] < 0.) {
862 		igraphdscal_(&nconv, &c_b71, &workl[iuptri + j - 1], &ldq);
863 		igraphdscal_(&nconv, &c_b71, &workl[iuptri + (j - 1) * ldq], &c__1);
864 	    }
865 
866 /* L20: */
867 	}
868 
869 	if (*(unsigned char *)howmny == 'A') {
870 
871 /*           %--------------------------------------------%
872              | Compute the NCONV wanted eigenvectors of T |
873              | located in workl(iuptri,ldq).              |
874              %--------------------------------------------% */
875 
876 	    i__1 = *ncv;
877 	    for (j = 1; j <= i__1; ++j) {
878 		if (j <= nconv) {
879 		    select[j] = TRUE_;
880 		} else {
881 		    select[j] = FALSE_;
882 		}
883 /* L30: */
884 	    }
885 
886 	    igraphdtrevc_("Right", "Select", &select[1], ncv, &workl[iuptri], &ldq,
887 		    vl, &c__1, &workl[invsub], &ldq, ncv, &outncv, &workev[1],
888 		     &ierr);
889 
890 	    if (ierr != 0) {
891 		*info = -9;
892 		goto L9000;
893 	    }
894 
895 /*           %------------------------------------------------%
896              | Scale the returning eigenvectors so that their |
897              | Euclidean norms are all one. LAPACK subroutine |
898              | dtrevc returns each eigenvector normalized so  |
899              | that the element of largest magnitude has      |
900              | magnitude 1;                                   |
901              %------------------------------------------------% */
902 
903 	    iconj = 0;
904 	    i__1 = nconv;
905 	    for (j = 1; j <= i__1; ++j) {
906 
907 		if (workl[iheigi + j - 1] == 0.) {
908 
909 /*                 %----------------------%
910                    | real eigenvalue case |
911                    %----------------------% */
912 
913 		    temp = igraphdnrm2_(ncv, &workl[invsub + (j - 1) * ldq], &c__1);
914 		    d__1 = 1. / temp;
915 		    igraphdscal_(ncv, &d__1, &workl[invsub + (j - 1) * ldq], &c__1);
916 
917 		} else {
918 
919 /*                 %-------------------------------------------%
920                    | Complex conjugate pair case. Note that    |
921                    | since the real and imaginary part of      |
922                    | the eigenvector are stored in consecutive |
923                    | columns, we further normalize by the      |
924                    | square root of two.                       |
925                    %-------------------------------------------% */
926 
927 		    if (iconj == 0) {
928 			d__1 = igraphdnrm2_(ncv, &workl[invsub + (j - 1) * ldq], &
929 				c__1);
930 			d__2 = igraphdnrm2_(ncv, &workl[invsub + j * ldq], &c__1);
931 			temp = igraphdlapy2_(&d__1, &d__2);
932 			d__1 = 1. / temp;
933 			igraphdscal_(ncv, &d__1, &workl[invsub + (j - 1) * ldq], &
934 				c__1);
935 			d__1 = 1. / temp;
936 			igraphdscal_(ncv, &d__1, &workl[invsub + j * ldq], &c__1);
937 			iconj = 1;
938 		    } else {
939 			iconj = 0;
940 		    }
941 
942 		}
943 
944 /* L40: */
945 	    }
946 
947 	    igraphdgemv_("T", ncv, &nconv, &c_b45, &workl[invsub], &ldq, &workl[
948 		    ihbds], &c__1, &c_b44, &workev[1], &c__1);
949 
950 	    iconj = 0;
951 	    i__1 = nconv;
952 	    for (j = 1; j <= i__1; ++j) {
953 		if (workl[iheigi + j - 1] != 0.) {
954 
955 /*                 %-------------------------------------------%
956                    | Complex conjugate pair case. Note that    |
957                    | since the real and imaginary part of      |
958                    | the eigenvector are stored in consecutive |
959                    %-------------------------------------------% */
960 
961 		    if (iconj == 0) {
962 			workev[j] = igraphdlapy2_(&workev[j], &workev[j + 1]);
963 			workev[j + 1] = workev[j];
964 			iconj = 1;
965 		    } else {
966 			iconj = 0;
967 		    }
968 		}
969 /* L45: */
970 	    }
971 
972 	    if (msglvl > 2) {
973 		igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &
974 			c__1);
975 		igraphdvout_(&logfil, ncv, &workl[ihbds], &ndigit, "_neupd: Last r"
976 			"ow of the eigenvector matrix for T", (ftnlen)48);
977 		if (msglvl > 3) {
978 		    igraphdmout_(&logfil, ncv, ncv, &workl[invsub], &ldq, &ndigit,
979 			    "_neupd: The eigenvector matrix for T", (ftnlen)
980 			    36);
981 		}
982 	    }
983 
984 /*           %---------------------------------------%
985              | Copy Ritz estimates into workl(ihbds) |
986              %---------------------------------------% */
987 
988 	    igraphdcopy_(&nconv, &workev[1], &c__1, &workl[ihbds], &c__1);
989 
990 /*           %---------------------------------------------------------%
991              | Compute the QR factorization of the eigenvector matrix  |
992              | associated with leading portion of T in the first NCONV |
993              | columns of workl(invsub,ldq).                           |
994              %---------------------------------------------------------% */
995 
996 	    igraphdgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*
997 		    ncv + 1], &ierr);
998 
999 /*           %----------------------------------------------%
1000              | * Postmultiply Z by Q.                       |
1001              | * Postmultiply Z by R.                       |
1002              | The N by NCONV matrix Z is now contains the  |
1003              | Ritz vectors associated with the Ritz values |
1004              | in workl(iheigr) and workl(iheigi).          |
1005              %----------------------------------------------% */
1006 
1007 	    igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &
1008 		    ldq, &workev[1], &z__[z_offset], ldz, &workd[*n + 1], &
1009 		    ierr);
1010 
1011 	    igraphdtrmm_("Right", "Upper", "No transpose", "Non-unit", n, &nconv, &
1012 		    c_b45, &workl[invsub], &ldq, &z__[z_offset], ldz);
1013 
1014 	}
1015 
1016     } else {
1017 
1018 /*        %------------------------------------------------------%
1019           | An approximate invariant subspace is not needed.     |
1020           | Place the Ritz values computed DNAUPD into DR and DI |
1021           %------------------------------------------------------% */
1022 
1023 	igraphdcopy_(&nconv, &workl[ritzr], &c__1, &dr[1], &c__1);
1024 	igraphdcopy_(&nconv, &workl[ritzi], &c__1, &di[1], &c__1);
1025 	igraphdcopy_(&nconv, &workl[ritzr], &c__1, &workl[iheigr], &c__1);
1026 	igraphdcopy_(&nconv, &workl[ritzi], &c__1, &workl[iheigi], &c__1);
1027 	igraphdcopy_(&nconv, &workl[bounds], &c__1, &workl[ihbds], &c__1);
1028     }
1029 
1030 /*     %------------------------------------------------%
1031        | Transform the Ritz values and possibly vectors |
1032        | and corresponding error bounds of OP to those  |
1033        | of A*x = lambda*B*x.                           |
1034        %------------------------------------------------% */
1035 
1036     if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {
1037 
1038 	if (*rvec) {
1039 	    igraphdscal_(ncv, &rnorm, &workl[ihbds], &c__1);
1040 	}
1041 
1042     } else {
1043 
1044 /*        %---------------------------------------%
1045           |   A spectral transformation was used. |
1046           | * Determine the Ritz estimates of the |
1047           |   Ritz values in the original system. |
1048           %---------------------------------------% */
1049 
1050 	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
1051 
1052 	    if (*rvec) {
1053 		igraphdscal_(ncv, &rnorm, &workl[ihbds], &c__1);
1054 	    }
1055 
1056 	    i__1 = *ncv;
1057 	    for (k = 1; k <= i__1; ++k) {
1058 		temp = igraphdlapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1])
1059 			;
1060 		workl[ihbds + k - 1] = (d__1 = workl[ihbds + k - 1], abs(d__1)
1061 			) / temp / temp;
1062 /* L50: */
1063 	    }
1064 
1065 	} else if (s_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0) {
1066 
1067 	    i__1 = *ncv;
1068 	    for (k = 1; k <= i__1; ++k) {
1069 /* L60: */
1070 	    }
1071 
1072 	} else if (s_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) {
1073 
1074 	    i__1 = *ncv;
1075 	    for (k = 1; k <= i__1; ++k) {
1076 /* L70: */
1077 	    }
1078 
1079 	}
1080 
1081 /*        %-----------------------------------------------------------%
1082           | *  Transform the Ritz values back to the original system. |
1083           |    For TYPE = 'SHIFTI' the transformation is              |
1084           |             lambda = 1/theta + sigma                      |
1085           |    For TYPE = 'REALPT' or 'IMAGPT' the user must from     |
1086           |    Rayleigh quotients or a projection. See remark 3 above.|
1087           | NOTES:                                                    |
1088           | *The Ritz vectors are not affected by the transformation. |
1089           %-----------------------------------------------------------% */
1090 
1091 	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
1092 
1093 	    i__1 = *ncv;
1094 	    for (k = 1; k <= i__1; ++k) {
1095 		temp = igraphdlapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1])
1096 			;
1097 		workl[iheigr + k - 1] = workl[iheigr + k - 1] / temp / temp +
1098 			*sigmar;
1099 		workl[iheigi + k - 1] = -workl[iheigi + k - 1] / temp / temp
1100 			+ *sigmai;
1101 /* L80: */
1102 	    }
1103 
1104 	    igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
1105 	    igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);
1106 
1107 	} else if (s_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0 ||
1108 		s_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) {
1109 
1110 	    igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
1111 	    igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);
1112 
1113 	}
1114 
1115     }
1116 
1117     if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 && msglvl > 1) {
1118 	igraphdvout_(&logfil, &nconv, &dr[1], &ndigit, "_neupd: Untransformed real"
1119 		" part of the Ritz valuess.", (ftnlen)52);
1120 	igraphdvout_(&logfil, &nconv, &di[1], &ndigit, "_neupd: Untransformed imag"
1121 		" part of the Ritz valuess.", (ftnlen)52);
1122 	igraphdvout_(&logfil, &nconv, &workl[ihbds], &ndigit, "_neupd: Ritz estima"
1123 		"tes of untransformed Ritz values.", (ftnlen)52);
1124     } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && msglvl >
1125 	    1) {
1126 	igraphdvout_(&logfil, &nconv, &dr[1], &ndigit, "_neupd: Real parts of conv"
1127 		"erged Ritz values.", (ftnlen)44);
1128 	igraphdvout_(&logfil, &nconv, &di[1], &ndigit, "_neupd: Imag parts of conv"
1129 		"erged Ritz values.", (ftnlen)44);
1130 	igraphdvout_(&logfil, &nconv, &workl[ihbds], &ndigit, "_neupd: Associated "
1131 		"Ritz estimates.", (ftnlen)34);
1132     }
1133 
1134 /*     %-------------------------------------------------%
1135        | Eigenvector Purification step. Formally perform |
1136        | one of inverse subspace iteration. Only used    |
1137        | for MODE = 2.                                   |
1138        %-------------------------------------------------% */
1139 
1140     if (*rvec && *(unsigned char *)howmny == 'A' && s_cmp(type__, "SHIFTI", (
1141 	    ftnlen)6, (ftnlen)6) == 0) {
1142 
1143 /*        %------------------------------------------------%
1144           | Purify the computed Ritz vectors by adding a   |
1145           | little bit of the residual vector:             |
1146           |                      T                         |
1147           |          resid(:)*( e    s ) / theta           |
1148           |                      NCV                       |
1149           | where H s = s theta. Remember that when theta  |
1150           | has nonzero imaginary part, the corresponding  |
1151           | Ritz vector is stored across two columns of Z. |
1152           %------------------------------------------------% */
1153 
1154 	iconj = 0;
1155 	i__1 = nconv;
1156 	for (j = 1; j <= i__1; ++j) {
1157 	    if (workl[iheigi + j - 1] == 0.) {
1158 		workev[j] = workl[invsub + (j - 1) * ldq + *ncv - 1] / workl[
1159 			iheigr + j - 1];
1160 	    } else if (iconj == 0) {
1161 		temp = igraphdlapy2_(&workl[iheigr + j - 1], &workl[iheigi + j - 1])
1162 			;
1163 		workev[j] = (workl[invsub + (j - 1) * ldq + *ncv - 1] * workl[
1164 			iheigr + j - 1] + workl[invsub + j * ldq + *ncv - 1] *
1165 			 workl[iheigi + j - 1]) / temp / temp;
1166 		workev[j + 1] = (workl[invsub + j * ldq + *ncv - 1] * workl[
1167 			iheigr + j - 1] - workl[invsub + (j - 1) * ldq + *ncv
1168 			- 1] * workl[iheigi + j - 1]) / temp / temp;
1169 		iconj = 1;
1170 	    } else {
1171 		iconj = 0;
1172 	    }
1173 /* L110: */
1174 	}
1175 
1176 /*        %---------------------------------------%
1177           | Perform a rank one update to Z and    |
1178           | purify all the Ritz vectors together. |
1179           %---------------------------------------% */
1180 
1181 	igraphdger_(n, &nconv, &c_b45, &resid[1], &c__1, &workev[1], &c__1, &z__[
1182 		z_offset], ldz);
1183 
1184     }
1185 
1186 L9000:
1187 
1188     return 0;
1189 
1190 /*     %---------------%
1191        | End of DNEUPD |
1192        %---------------% */
1193 
1194 } /* igraphdneupd_ */
1195 
1196