1 /*  -- translated by f2c (version 20191129).
2    You must link the resulting object file with libf2c:
3 	on Microsoft Windows system, link with libf2c.lib;
4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
6 	-- in that order, at the end of the command line, as in
7 		cc *.o -lf2c -lm
8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10 		http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "f2c.h"
14 
15 /* Table of constant values */
16 
17 static integer c__1 = 1;
18 static integer c_n1 = -1;
19 static doublereal c_b13 = -1.;
20 static doublereal c_b14 = 1.;
21 
22 /* > \brief \b DPOTRF
23 
24     =========== DOCUMENTATION ===========
25 
26    Online html documentation available at
27               http://www.netlib.org/lapack/explore-html/
28 
29    > \htmlonly
30    > Download DPOTRF + dependencies
31    > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotrf.
32 f">
33    > [TGZ]</a>
34    > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotrf.
35 f">
36    > [ZIP]</a>
37    > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotrf.
38 f">
39    > [TXT]</a>
40    > \endhtmlonly
41 
42     Definition:
43     ===========
44 
45          SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
46 
47          CHARACTER          UPLO
48          INTEGER            INFO, LDA, N
49          DOUBLE PRECISION   A( LDA, * )
50 
51 
52    > \par Purpose:
53     =============
54    >
55    > \verbatim
56    >
57    > DPOTRF computes the Cholesky factorization of a real symmetric
58    > positive definite matrix A.
59    >
60    > The factorization has the form
61    >    A = U**T * U,  if UPLO = 'U', or
62    >    A = L  * L**T,  if UPLO = 'L',
63    > where U is an upper triangular matrix and L is lower triangular.
64    >
65    > This is the block version of the algorithm, calling Level 3 BLAS.
66    > \endverbatim
67 
68     Arguments:
69     ==========
70 
71    > \param[in] UPLO
72    > \verbatim
73    >          UPLO is CHARACTER*1
74    >          = 'U':  Upper triangle of A is stored;
75    >          = 'L':  Lower triangle of A is stored.
76    > \endverbatim
77    >
78    > \param[in] N
79    > \verbatim
80    >          N is INTEGER
81    >          The order of the matrix A.  N >= 0.
82    > \endverbatim
83    >
84    > \param[in,out] A
85    > \verbatim
86    >          A is DOUBLE PRECISION array, dimension (LDA,N)
87    >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
88    >          N-by-N upper triangular part of A contains the upper
89    >          triangular part of the matrix A, and the strictly lower
90    >          triangular part of A is not referenced.  If UPLO = 'L', the
91    >          leading N-by-N lower triangular part of A contains the lower
92    >          triangular part of the matrix A, and the strictly upper
93    >          triangular part of A is not referenced.
94    >
95    >          On exit, if INFO = 0, the factor U or L from the Cholesky
96    >          factorization A = U**T*U or A = L*L**T.
97    > \endverbatim
98    >
99    > \param[in] LDA
100    > \verbatim
101    >          LDA is INTEGER
102    >          The leading dimension of the array A.  LDA >= max(1,N).
103    > \endverbatim
104    >
105    > \param[out] INFO
106    > \verbatim
107    >          INFO is INTEGER
108    >          = 0:  successful exit
109    >          < 0:  if INFO = -i, the i-th argument had an illegal value
110    >          > 0:  if INFO = i, the leading minor of order i is not
111    >                positive definite, and the factorization could not be
112    >                completed.
113    > \endverbatim
114 
115     Authors:
116     ========
117 
118    > \author Univ. of Tennessee
119    > \author Univ. of California Berkeley
120    > \author Univ. of Colorado Denver
121    > \author NAG Ltd.
122 
123    > \date November 2011
124 
125    > \ingroup doublePOcomputational
126 
127     =====================================================================
igraphdpotrf_(char * uplo,integer * n,doublereal * a,integer * lda,integer * info)128    Subroutine */ int igraphdpotrf_(char *uplo, integer *n, doublereal *a, integer *
129 	lda, integer *info)
130 {
131     /* System generated locals */
132     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
133 
134     /* Local variables */
135     integer j, jb, nb;
136     extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *,
137 	    integer *, doublereal *, doublereal *, integer *, doublereal *,
138 	    integer *, doublereal *, doublereal *, integer *);
139     extern logical igraphlsame_(char *, char *);
140     extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *,
141 	    integer *, integer *, doublereal *, doublereal *, integer *,
142 	    doublereal *, integer *);
143     logical upper;
144     extern /* Subroutine */ int igraphdsyrk_(char *, char *, integer *, integer *,
145 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
146 	     integer *), igraphdpotf2_(char *, integer *,
147 	    doublereal *, integer *, integer *), igraphxerbla_(char *,
148 	    integer *, ftnlen);
149     extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *,
150 	    integer *, integer *, ftnlen, ftnlen);
151 
152 
153 /*  -- LAPACK computational routine (version 3.4.0) --
154     -- LAPACK is a software package provided by Univ. of Tennessee,    --
155     -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156        November 2011
157 
158 
159     =====================================================================
160 
161 
162        Test the input parameters.
163 
164        Parameter adjustments */
165     a_dim1 = *lda;
166     a_offset = 1 + a_dim1;
167     a -= a_offset;
168 
169     /* Function Body */
170     *info = 0;
171     upper = igraphlsame_(uplo, "U");
172     if (! upper && ! igraphlsame_(uplo, "L")) {
173 	*info = -1;
174     } else if (*n < 0) {
175 	*info = -2;
176     } else if (*lda < max(1,*n)) {
177 	*info = -4;
178     }
179     if (*info != 0) {
180 	i__1 = -(*info);
181 	igraphxerbla_("DPOTRF", &i__1, (ftnlen)6);
182 	return 0;
183     }
184 
185 /*     Quick return if possible */
186 
187     if (*n == 0) {
188 	return 0;
189     }
190 
191 /*     Determine the block size for this environment. */
192 
193     nb = igraphilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
194 	    ftnlen)1);
195     if (nb <= 1 || nb >= *n) {
196 
197 /*        Use unblocked code. */
198 
199 	igraphdpotf2_(uplo, n, &a[a_offset], lda, info);
200     } else {
201 
202 /*        Use blocked code. */
203 
204 	if (upper) {
205 
206 /*           Compute the Cholesky factorization A = U**T*U. */
207 
208 	    i__1 = *n;
209 	    i__2 = nb;
210 	    for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
211 
212 /*              Update and factorize the current diagonal block and test
213                 for non-positive-definiteness.
214 
215    Computing MIN */
216 		i__3 = nb, i__4 = *n - j + 1;
217 		jb = min(i__3,i__4);
218 		i__3 = j - 1;
219 		igraphdsyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a[j *
220 			a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda);
221 		igraphdpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
222 		if (*info != 0) {
223 		    goto L30;
224 		}
225 		if (j + jb <= *n) {
226 
227 /*                 Compute the current block row. */
228 
229 		    i__3 = *n - j - jb + 1;
230 		    i__4 = j - 1;
231 		    igraphdgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
232 			    c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
233 			    a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) *
234 			    a_dim1], lda);
235 		    i__3 = *n - j - jb + 1;
236 		    igraphdtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
237 			    i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j
238 			    + jb) * a_dim1], lda);
239 		}
240 /* L10: */
241 	    }
242 
243 	} else {
244 
245 /*           Compute the Cholesky factorization A = L*L**T. */
246 
247 	    i__2 = *n;
248 	    i__1 = nb;
249 	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
250 
251 /*              Update and factorize the current diagonal block and test
252                 for non-positive-definiteness.
253 
254    Computing MIN */
255 		i__3 = nb, i__4 = *n - j + 1;
256 		jb = min(i__3,i__4);
257 		i__3 = j - 1;
258 		igraphdsyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a[j +
259 			a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda);
260 		igraphdpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
261 		if (*info != 0) {
262 		    goto L30;
263 		}
264 		if (j + jb <= *n) {
265 
266 /*                 Compute the current block column. */
267 
268 		    i__3 = *n - j - jb + 1;
269 		    i__4 = j - 1;
270 		    igraphdgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
271 			    c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
272 			    lda, &c_b14, &a[j + jb + j * a_dim1], lda);
273 		    i__3 = *n - j - jb + 1;
274 		    igraphdtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
275 			    jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb +
276 			    j * a_dim1], lda);
277 		}
278 /* L20: */
279 	    }
280 	}
281     }
282     goto L40;
283 
284 L30:
285     *info = *info + j - 1;
286 
287 L40:
288     return 0;
289 
290 /*     End of DPOTRF */
291 
292 } /* igraphdpotrf_ */
293 
294