1*> \brief <b> CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CHEEVD + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevd.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevd.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevd.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, 22* LRWORK, IWORK, LIWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER JOBZ, UPLO 26* INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N 27* .. 28* .. Array Arguments .. 29* INTEGER IWORK( * ) 30* REAL RWORK( * ), W( * ) 31* COMPLEX A( LDA, * ), WORK( * ) 32* .. 33* 34* 35*> \par Purpose: 36* ============= 37*> 38*> \verbatim 39*> 40*> CHEEVD computes all eigenvalues and, optionally, eigenvectors of a 41*> complex Hermitian matrix A. If eigenvectors are desired, it uses a 42*> divide and conquer algorithm. 43*> 44*> The divide and conquer algorithm makes very mild assumptions about 45*> floating point arithmetic. It will work on machines with a guard 46*> digit in add/subtract, or on those binary machines without guard 47*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or 48*> Cray-2. It could conceivably fail on hexadecimal or decimal machines 49*> without guard digits, but we know of none. 50*> \endverbatim 51* 52* Arguments: 53* ========== 54* 55*> \param[in] JOBZ 56*> \verbatim 57*> JOBZ is CHARACTER*1 58*> = 'N': Compute eigenvalues only; 59*> = 'V': Compute eigenvalues and eigenvectors. 60*> \endverbatim 61*> 62*> \param[in] UPLO 63*> \verbatim 64*> UPLO is CHARACTER*1 65*> = 'U': Upper triangle of A is stored; 66*> = 'L': Lower triangle of A is stored. 67*> \endverbatim 68*> 69*> \param[in] N 70*> \verbatim 71*> N is INTEGER 72*> The order of the matrix A. N >= 0. 73*> \endverbatim 74*> 75*> \param[in,out] A 76*> \verbatim 77*> A is COMPLEX array, dimension (LDA, N) 78*> On entry, the Hermitian matrix A. If UPLO = 'U', the 79*> leading N-by-N upper triangular part of A contains the 80*> upper triangular part of the matrix A. If UPLO = 'L', 81*> the leading N-by-N lower triangular part of A contains 82*> the lower triangular part of the matrix A. 83*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the 84*> orthonormal eigenvectors of the matrix A. 85*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') 86*> or the upper triangle (if UPLO='U') of A, including the 87*> diagonal, is destroyed. 88*> \endverbatim 89*> 90*> \param[in] LDA 91*> \verbatim 92*> LDA is INTEGER 93*> The leading dimension of the array A. LDA >= max(1,N). 94*> \endverbatim 95*> 96*> \param[out] W 97*> \verbatim 98*> W is REAL array, dimension (N) 99*> If INFO = 0, the eigenvalues in ascending order. 100*> \endverbatim 101*> 102*> \param[out] WORK 103*> \verbatim 104*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) 105*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 106*> \endverbatim 107*> 108*> \param[in] LWORK 109*> \verbatim 110*> LWORK is INTEGER 111*> The length of the array WORK. 112*> If N <= 1, LWORK must be at least 1. 113*> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. 114*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. 115*> 116*> If LWORK = -1, then a workspace query is assumed; the routine 117*> only calculates the optimal sizes of the WORK, RWORK and 118*> IWORK arrays, returns these values as the first entries of 119*> the WORK, RWORK and IWORK arrays, and no error message 120*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 121*> \endverbatim 122*> 123*> \param[out] RWORK 124*> \verbatim 125*> RWORK is REAL array, 126*> dimension (LRWORK) 127*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. 128*> \endverbatim 129*> 130*> \param[in] LRWORK 131*> \verbatim 132*> LRWORK is INTEGER 133*> The dimension of the array RWORK. 134*> If N <= 1, LRWORK must be at least 1. 135*> If JOBZ = 'N' and N > 1, LRWORK must be at least N. 136*> If JOBZ = 'V' and N > 1, LRWORK must be at least 137*> 1 + 5*N + 2*N**2. 138*> 139*> If LRWORK = -1, then a workspace query is assumed; the 140*> routine only calculates the optimal sizes of the WORK, RWORK 141*> and IWORK arrays, returns these values as the first entries 142*> of the WORK, RWORK and IWORK arrays, and no error message 143*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 144*> \endverbatim 145*> 146*> \param[out] IWORK 147*> \verbatim 148*> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) 149*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. 150*> \endverbatim 151*> 152*> \param[in] LIWORK 153*> \verbatim 154*> LIWORK is INTEGER 155*> The dimension of the array IWORK. 156*> If N <= 1, LIWORK must be at least 1. 157*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1. 158*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. 159*> 160*> If LIWORK = -1, then a workspace query is assumed; the 161*> routine only calculates the optimal sizes of the WORK, RWORK 162*> and IWORK arrays, returns these values as the first entries 163*> of the WORK, RWORK and IWORK arrays, and no error message 164*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. 165*> \endverbatim 166*> 167*> \param[out] INFO 168*> \verbatim 169*> INFO is INTEGER 170*> = 0: successful exit 171*> < 0: if INFO = -i, the i-th argument had an illegal value 172*> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed 173*> to converge; i off-diagonal elements of an intermediate 174*> tridiagonal form did not converge to zero; 175*> if INFO = i and JOBZ = 'V', then the algorithm failed 176*> to compute an eigenvalue while working on the submatrix 177*> lying in rows and columns INFO/(N+1) through 178*> mod(INFO,N+1). 179*> \endverbatim 180* 181* Authors: 182* ======== 183* 184*> \author Univ. of Tennessee 185*> \author Univ. of California Berkeley 186*> \author Univ. of Colorado Denver 187*> \author NAG Ltd. 188* 189*> \ingroup complexHEeigen 190* 191*> \par Further Details: 192* ===================== 193*> 194*> Modified description of INFO. Sven, 16 Feb 05. 195* 196*> \par Contributors: 197* ================== 198*> 199*> Jeff Rutter, Computer Science Division, University of California 200*> at Berkeley, USA 201*> 202* ===================================================================== 203 SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, 204 $ LRWORK, IWORK, LIWORK, INFO ) 205* 206* -- LAPACK driver routine -- 207* -- LAPACK is a software package provided by Univ. of Tennessee, -- 208* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 209* 210* .. Scalar Arguments .. 211 CHARACTER JOBZ, UPLO 212 INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N 213* .. 214* .. Array Arguments .. 215 INTEGER IWORK( * ) 216 REAL RWORK( * ), W( * ) 217 COMPLEX A( LDA, * ), WORK( * ) 218* .. 219* 220* ===================================================================== 221* 222* .. Parameters .. 223 REAL ZERO, ONE 224 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 225 COMPLEX CONE 226 PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) ) 227* .. 228* .. Local Scalars .. 229 LOGICAL LOWER, LQUERY, WANTZ 230 INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2, 231 $ INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK, 232 $ LLWRK2, LOPT, LROPT, LRWMIN, LWMIN 233 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, 234 $ SMLNUM 235* .. 236* .. External Functions .. 237 LOGICAL LSAME 238 INTEGER ILAENV 239 REAL CLANHE, SLAMCH 240 EXTERNAL ILAENV, LSAME, CLANHE, SLAMCH 241* .. 242* .. External Subroutines .. 243 EXTERNAL CHETRD, CLACPY, CLASCL, CSTEDC, CUNMTR, SSCAL, 244 $ SSTERF, XERBLA 245* .. 246* .. Intrinsic Functions .. 247 INTRINSIC MAX, SQRT 248* .. 249* .. Executable Statements .. 250* 251* Test the input parameters. 252* 253 WANTZ = LSAME( JOBZ, 'V' ) 254 LOWER = LSAME( UPLO, 'L' ) 255 LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) 256* 257 INFO = 0 258 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 259 INFO = -1 260 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN 261 INFO = -2 262 ELSE IF( N.LT.0 ) THEN 263 INFO = -3 264 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 265 INFO = -5 266 END IF 267* 268 IF( INFO.EQ.0 ) THEN 269 IF( N.LE.1 ) THEN 270 LWMIN = 1 271 LRWMIN = 1 272 LIWMIN = 1 273 LOPT = LWMIN 274 LROPT = LRWMIN 275 LIOPT = LIWMIN 276 ELSE 277 IF( WANTZ ) THEN 278 LWMIN = 2*N + N*N 279 LRWMIN = 1 + 5*N + 2*N**2 280 LIWMIN = 3 + 5*N 281 ELSE 282 LWMIN = N + 1 283 LRWMIN = N 284 LIWMIN = 1 285 END IF 286 LOPT = MAX( LWMIN, N + 287 $ ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 ) ) 288 LROPT = LRWMIN 289 LIOPT = LIWMIN 290 END IF 291 WORK( 1 ) = LOPT 292 RWORK( 1 ) = LROPT 293 IWORK( 1 ) = LIOPT 294* 295 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN 296 INFO = -8 297 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN 298 INFO = -10 299 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN 300 INFO = -12 301 END IF 302 END IF 303* 304 IF( INFO.NE.0 ) THEN 305 CALL XERBLA( 'CHEEVD', -INFO ) 306 RETURN 307 ELSE IF( LQUERY ) THEN 308 RETURN 309 END IF 310* 311* Quick return if possible 312* 313 IF( N.EQ.0 ) 314 $ RETURN 315* 316 IF( N.EQ.1 ) THEN 317 W( 1 ) = REAL( A( 1, 1 ) ) 318 IF( WANTZ ) 319 $ A( 1, 1 ) = CONE 320 RETURN 321 END IF 322* 323* Get machine constants. 324* 325 SAFMIN = SLAMCH( 'Safe minimum' ) 326 EPS = SLAMCH( 'Precision' ) 327 SMLNUM = SAFMIN / EPS 328 BIGNUM = ONE / SMLNUM 329 RMIN = SQRT( SMLNUM ) 330 RMAX = SQRT( BIGNUM ) 331* 332* Scale matrix to allowable range, if necessary. 333* 334 ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK ) 335 ISCALE = 0 336 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN 337 ISCALE = 1 338 SIGMA = RMIN / ANRM 339 ELSE IF( ANRM.GT.RMAX ) THEN 340 ISCALE = 1 341 SIGMA = RMAX / ANRM 342 END IF 343 IF( ISCALE.EQ.1 ) 344 $ CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO ) 345* 346* Call CHETRD to reduce Hermitian matrix to tridiagonal form. 347* 348 INDE = 1 349 INDTAU = 1 350 INDWRK = INDTAU + N 351 INDRWK = INDE + N 352 INDWK2 = INDWRK + N*N 353 LLWORK = LWORK - INDWRK + 1 354 LLWRK2 = LWORK - INDWK2 + 1 355 LLRWK = LRWORK - INDRWK + 1 356 CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ), 357 $ WORK( INDWRK ), LLWORK, IINFO ) 358* 359* For eigenvalues only, call SSTERF. For eigenvectors, first call 360* CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the 361* tridiagonal matrix, then call CUNMTR to multiply it to the 362* Householder transformations represented as Householder vectors in 363* A. 364* 365 IF( .NOT.WANTZ ) THEN 366 CALL SSTERF( N, W, RWORK( INDE ), INFO ) 367 ELSE 368 CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N, 369 $ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK, 370 $ IWORK, LIWORK, INFO ) 371 CALL CUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ), 372 $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO ) 373 CALL CLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA ) 374 END IF 375* 376* If matrix was scaled, then rescale eigenvalues appropriately. 377* 378 IF( ISCALE.EQ.1 ) THEN 379 IF( INFO.EQ.0 ) THEN 380 IMAX = N 381 ELSE 382 IMAX = INFO - 1 383 END IF 384 CALL SSCAL( IMAX, ONE / SIGMA, W, 1 ) 385 END IF 386* 387 WORK( 1 ) = LOPT 388 RWORK( 1 ) = LROPT 389 IWORK( 1 ) = LIOPT 390* 391 RETURN 392* 393* End of CHEEVD 394* 395 END 396