1*> \brief \b CUNGTR 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CUNGTR + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungtr.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungtr.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungtr.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER UPLO 25* INTEGER INFO, LDA, LWORK, N 26* .. 27* .. Array Arguments .. 28* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> CUNGTR generates a complex unitary matrix Q which is defined as the 38*> product of n-1 elementary reflectors of order N, as returned by 39*> CHETRD: 40*> 41*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), 42*> 43*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). 44*> \endverbatim 45* 46* Arguments: 47* ========== 48* 49*> \param[in] UPLO 50*> \verbatim 51*> UPLO is CHARACTER*1 52*> = 'U': Upper triangle of A contains elementary reflectors 53*> from CHETRD; 54*> = 'L': Lower triangle of A contains elementary reflectors 55*> from CHETRD. 56*> \endverbatim 57*> 58*> \param[in] N 59*> \verbatim 60*> N is INTEGER 61*> The order of the matrix Q. N >= 0. 62*> \endverbatim 63*> 64*> \param[in,out] A 65*> \verbatim 66*> A is COMPLEX array, dimension (LDA,N) 67*> On entry, the vectors which define the elementary reflectors, 68*> as returned by CHETRD. 69*> On exit, the N-by-N unitary matrix Q. 70*> \endverbatim 71*> 72*> \param[in] LDA 73*> \verbatim 74*> LDA is INTEGER 75*> The leading dimension of the array A. LDA >= N. 76*> \endverbatim 77*> 78*> \param[in] TAU 79*> \verbatim 80*> TAU is COMPLEX array, dimension (N-1) 81*> TAU(i) must contain the scalar factor of the elementary 82*> reflector H(i), as returned by CHETRD. 83*> \endverbatim 84*> 85*> \param[out] WORK 86*> \verbatim 87*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) 88*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 89*> \endverbatim 90*> 91*> \param[in] LWORK 92*> \verbatim 93*> LWORK is INTEGER 94*> The dimension of the array WORK. LWORK >= N-1. 95*> For optimum performance LWORK >= (N-1)*NB, where NB is 96*> the optimal blocksize. 97*> 98*> If LWORK = -1, then a workspace query is assumed; the routine 99*> only calculates the optimal size of the WORK array, returns 100*> this value as the first entry of the WORK array, and no error 101*> message related to LWORK is issued by XERBLA. 102*> \endverbatim 103*> 104*> \param[out] INFO 105*> \verbatim 106*> INFO is INTEGER 107*> = 0: successful exit 108*> < 0: if INFO = -i, the i-th argument had an illegal value 109*> \endverbatim 110* 111* Authors: 112* ======== 113* 114*> \author Univ. of Tennessee 115*> \author Univ. of California Berkeley 116*> \author Univ. of Colorado Denver 117*> \author NAG Ltd. 118* 119*> \ingroup complexOTHERcomputational 120* 121* ===================================================================== 122 SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO ) 123* 124* -- LAPACK computational routine -- 125* -- LAPACK is a software package provided by Univ. of Tennessee, -- 126* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 127* 128* .. Scalar Arguments .. 129 CHARACTER UPLO 130 INTEGER INFO, LDA, LWORK, N 131* .. 132* .. Array Arguments .. 133 COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 134* .. 135* 136* ===================================================================== 137* 138* .. Parameters .. 139 COMPLEX ZERO, ONE 140 PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), 141 $ ONE = ( 1.0E+0, 0.0E+0 ) ) 142* .. 143* .. Local Scalars .. 144 LOGICAL LQUERY, UPPER 145 INTEGER I, IINFO, J, LWKOPT, NB 146* .. 147* .. External Functions .. 148 LOGICAL LSAME 149 INTEGER ILAENV 150 EXTERNAL ILAENV, LSAME 151* .. 152* .. External Subroutines .. 153 EXTERNAL CUNGQL, CUNGQR, XERBLA 154* .. 155* .. Intrinsic Functions .. 156 INTRINSIC MAX 157* .. 158* .. Executable Statements .. 159* 160* Test the input arguments 161* 162 INFO = 0 163 LQUERY = ( LWORK.EQ.-1 ) 164 UPPER = LSAME( UPLO, 'U' ) 165 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 166 INFO = -1 167 ELSE IF( N.LT.0 ) THEN 168 INFO = -2 169 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 170 INFO = -4 171 ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN 172 INFO = -7 173 END IF 174* 175 IF( INFO.EQ.0 ) THEN 176 IF ( UPPER ) THEN 177 NB = ILAENV( 1, 'CUNGQL', ' ', N-1, N-1, N-1, -1 ) 178 ELSE 179 NB = ILAENV( 1, 'CUNGQR', ' ', N-1, N-1, N-1, -1 ) 180 END IF 181 LWKOPT = MAX( 1, N-1 )*NB 182 WORK( 1 ) = LWKOPT 183 END IF 184* 185 IF( INFO.NE.0 ) THEN 186 CALL XERBLA( 'CUNGTR', -INFO ) 187 RETURN 188 ELSE IF( LQUERY ) THEN 189 RETURN 190 END IF 191* 192* Quick return if possible 193* 194 IF( N.EQ.0 ) THEN 195 WORK( 1 ) = 1 196 RETURN 197 END IF 198* 199 IF( UPPER ) THEN 200* 201* Q was determined by a call to CHETRD with UPLO = 'U' 202* 203* Shift the vectors which define the elementary reflectors one 204* column to the left, and set the last row and column of Q to 205* those of the unit matrix 206* 207 DO 20 J = 1, N - 1 208 DO 10 I = 1, J - 1 209 A( I, J ) = A( I, J+1 ) 210 10 CONTINUE 211 A( N, J ) = ZERO 212 20 CONTINUE 213 DO 30 I = 1, N - 1 214 A( I, N ) = ZERO 215 30 CONTINUE 216 A( N, N ) = ONE 217* 218* Generate Q(1:n-1,1:n-1) 219* 220 CALL CUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO ) 221* 222 ELSE 223* 224* Q was determined by a call to CHETRD with UPLO = 'L'. 225* 226* Shift the vectors which define the elementary reflectors one 227* column to the right, and set the first row and column of Q to 228* those of the unit matrix 229* 230 DO 50 J = N, 2, -1 231 A( 1, J ) = ZERO 232 DO 40 I = J + 1, N 233 A( I, J ) = A( I, J-1 ) 234 40 CONTINUE 235 50 CONTINUE 236 A( 1, 1 ) = ONE 237 DO 60 I = 2, N 238 A( I, 1 ) = ZERO 239 60 CONTINUE 240 IF( N.GT.1 ) THEN 241* 242* Generate Q(2:n,2:n) 243* 244 CALL CUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK, 245 $ LWORK, IINFO ) 246 END IF 247 END IF 248 WORK( 1 ) = LWKOPT 249 RETURN 250* 251* End of CUNGTR 252* 253 END 254