1*> \brief \b SLARZT forms the triangular factor T of a block reflector H = I - vtvH. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SLARZT + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarzt.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarzt.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarzt.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 22* 23* .. Scalar Arguments .. 24* CHARACTER DIRECT, STOREV 25* INTEGER K, LDT, LDV, N 26* .. 27* .. Array Arguments .. 28* REAL T( LDT, * ), TAU( * ), V( LDV, * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> SLARZT forms the triangular factor T of a real block reflector 38*> H of order > n, which is defined as a product of k elementary 39*> reflectors. 40*> 41*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; 42*> 43*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. 44*> 45*> If STOREV = 'C', the vector which defines the elementary reflector 46*> H(i) is stored in the i-th column of the array V, and 47*> 48*> H = I - V * T * V**T 49*> 50*> If STOREV = 'R', the vector which defines the elementary reflector 51*> H(i) is stored in the i-th row of the array V, and 52*> 53*> H = I - V**T * T * V 54*> 55*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. 56*> \endverbatim 57* 58* Arguments: 59* ========== 60* 61*> \param[in] DIRECT 62*> \verbatim 63*> DIRECT is CHARACTER*1 64*> Specifies the order in which the elementary reflectors are 65*> multiplied to form the block reflector: 66*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) 67*> = 'B': H = H(k) . . . H(2) H(1) (Backward) 68*> \endverbatim 69*> 70*> \param[in] STOREV 71*> \verbatim 72*> STOREV is CHARACTER*1 73*> Specifies how the vectors which define the elementary 74*> reflectors are stored (see also Further Details): 75*> = 'C': columnwise (not supported yet) 76*> = 'R': rowwise 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The order of the block reflector H. N >= 0. 83*> \endverbatim 84*> 85*> \param[in] K 86*> \verbatim 87*> K is INTEGER 88*> The order of the triangular factor T (= the number of 89*> elementary reflectors). K >= 1. 90*> \endverbatim 91*> 92*> \param[in,out] V 93*> \verbatim 94*> V is REAL array, dimension 95*> (LDV,K) if STOREV = 'C' 96*> (LDV,N) if STOREV = 'R' 97*> The matrix V. See further details. 98*> \endverbatim 99*> 100*> \param[in] LDV 101*> \verbatim 102*> LDV is INTEGER 103*> The leading dimension of the array V. 104*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. 105*> \endverbatim 106*> 107*> \param[in] TAU 108*> \verbatim 109*> TAU is REAL array, dimension (K) 110*> TAU(i) must contain the scalar factor of the elementary 111*> reflector H(i). 112*> \endverbatim 113*> 114*> \param[out] T 115*> \verbatim 116*> T is REAL array, dimension (LDT,K) 117*> The k by k triangular factor T of the block reflector. 118*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is 119*> lower triangular. The rest of the array is not used. 120*> \endverbatim 121*> 122*> \param[in] LDT 123*> \verbatim 124*> LDT is INTEGER 125*> The leading dimension of the array T. LDT >= K. 126*> \endverbatim 127* 128* Authors: 129* ======== 130* 131*> \author Univ. of Tennessee 132*> \author Univ. of California Berkeley 133*> \author Univ. of Colorado Denver 134*> \author NAG Ltd. 135* 136*> \ingroup realOTHERcomputational 137* 138*> \par Contributors: 139* ================== 140*> 141*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA 142* 143*> \par Further Details: 144* ===================== 145*> 146*> \verbatim 147*> 148*> The shape of the matrix V and the storage of the vectors which define 149*> the H(i) is best illustrated by the following example with n = 5 and 150*> k = 3. The elements equal to 1 are not stored; the corresponding 151*> array elements are modified but restored on exit. The rest of the 152*> array is not used. 153*> 154*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': 155*> 156*> ______V_____ 157*> ( v1 v2 v3 ) / \ 158*> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) 159*> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) 160*> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) 161*> ( v1 v2 v3 ) 162*> . . . 163*> . . . 164*> 1 . . 165*> 1 . 166*> 1 167*> 168*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': 169*> 170*> ______V_____ 171*> 1 / \ 172*> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) 173*> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) 174*> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) 175*> . . . 176*> ( v1 v2 v3 ) 177*> ( v1 v2 v3 ) 178*> V = ( v1 v2 v3 ) 179*> ( v1 v2 v3 ) 180*> ( v1 v2 v3 ) 181*> \endverbatim 182*> 183* ===================================================================== 184 SUBROUTINE SLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 185* 186* -- LAPACK computational routine -- 187* -- LAPACK is a software package provided by Univ. of Tennessee, -- 188* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 189* 190* .. Scalar Arguments .. 191 CHARACTER DIRECT, STOREV 192 INTEGER K, LDT, LDV, N 193* .. 194* .. Array Arguments .. 195 REAL T( LDT, * ), TAU( * ), V( LDV, * ) 196* .. 197* 198* ===================================================================== 199* 200* .. Parameters .. 201 REAL ZERO 202 PARAMETER ( ZERO = 0.0E+0 ) 203* .. 204* .. Local Scalars .. 205 INTEGER I, INFO, J 206* .. 207* .. External Subroutines .. 208 EXTERNAL SGEMV, STRMV, XERBLA 209* .. 210* .. External Functions .. 211 LOGICAL LSAME 212 EXTERNAL LSAME 213* .. 214* .. Executable Statements .. 215* 216* Check for currently supported options 217* 218 INFO = 0 219 IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN 220 INFO = -1 221 ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN 222 INFO = -2 223 END IF 224 IF( INFO.NE.0 ) THEN 225 CALL XERBLA( 'SLARZT', -INFO ) 226 RETURN 227 END IF 228* 229 DO 20 I = K, 1, -1 230 IF( TAU( I ).EQ.ZERO ) THEN 231* 232* H(i) = I 233* 234 DO 10 J = I, K 235 T( J, I ) = ZERO 236 10 CONTINUE 237 ELSE 238* 239* general case 240* 241 IF( I.LT.K ) THEN 242* 243* T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**T 244* 245 CALL SGEMV( 'No transpose', K-I, N, -TAU( I ), 246 $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO, 247 $ T( I+1, I ), 1 ) 248* 249* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i) 250* 251 CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I, 252 $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) 253 END IF 254 T( I, I ) = TAU( I ) 255 END IF 256 20 CONTINUE 257 RETURN 258* 259* End of SLARZT 260* 261 END 262