1*> \brief <b> ZHESVXX computes the solution to system of linear equations A * X = B for HE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHESVXX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesvxx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesvxx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesvxx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
22*                           EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
23*                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
24*                           NPARAMS, PARAMS, WORK, RWORK, INFO )
25*
26*       .. Scalar Arguments ..
27*       CHARACTER          EQUED, FACT, UPLO
28*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
29*      $                   N_ERR_BNDS
30*       DOUBLE PRECISION   RCOND, RPVGRW
31*       ..
32*       .. Array Arguments ..
33*       INTEGER            IPIV( * )
34*       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
35*      $                   WORK( * ), X( LDX, * )
36*       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
37*      $                   ERR_BNDS_NORM( NRHS, * ),
38*      $                   ERR_BNDS_COMP( NRHS, * )
39*       ..
40*
41*
42*> \par Purpose:
43*  =============
44*>
45*> \verbatim
46*>
47*>    ZHESVXX uses the diagonal pivoting factorization to compute the
48*>    solution to a complex*16 system of linear equations A * X = B, where
49*>    A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
50*>    matrices.
51*>
52*>    If requested, both normwise and maximum componentwise error bounds
53*>    are returned. ZHESVXX will return a solution with a tiny
54*>    guaranteed error (O(eps) where eps is the working machine
55*>    precision) unless the matrix is very ill-conditioned, in which
56*>    case a warning is returned. Relevant condition numbers also are
57*>    calculated and returned.
58*>
59*>    ZHESVXX accepts user-provided factorizations and equilibration
60*>    factors; see the definitions of the FACT and EQUED options.
61*>    Solving with refinement and using a factorization from a previous
62*>    ZHESVXX call will also produce a solution with either O(eps)
63*>    errors or warnings, but we cannot make that claim for general
64*>    user-provided factorizations and equilibration factors if they
65*>    differ from what ZHESVXX would itself produce.
66*> \endverbatim
67*
68*> \par Description:
69*  =================
70*>
71*> \verbatim
72*>
73*>    The following steps are performed:
74*>
75*>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
76*>    the system:
77*>
78*>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
79*>
80*>    Whether or not the system will be equilibrated depends on the
81*>    scaling of the matrix A, but if equilibration is used, A is
82*>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
83*>
84*>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
85*>    the matrix A (after equilibration if FACT = 'E') as
86*>
87*>       A = U * D * U**T,  if UPLO = 'U', or
88*>       A = L * D * L**T,  if UPLO = 'L',
89*>
90*>    where U (or L) is a product of permutation and unit upper (lower)
91*>    triangular matrices, and D is Hermitian and block diagonal with
92*>    1-by-1 and 2-by-2 diagonal blocks.
93*>
94*>    3. If some D(i,i)=0, so that D is exactly singular, then the
95*>    routine returns with INFO = i. Otherwise, the factored form of A
96*>    is used to estimate the condition number of the matrix A (see
97*>    argument RCOND).  If the reciprocal of the condition number is
98*>    less than machine precision, the routine still goes on to solve
99*>    for X and compute error bounds as described below.
100*>
101*>    4. The system of equations is solved for X using the factored form
102*>    of A.
103*>
104*>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
105*>    the routine will use iterative refinement to try to get a small
106*>    error and error bounds.  Refinement calculates the residual to at
107*>    least twice the working precision.
108*>
109*>    6. If equilibration was used, the matrix X is premultiplied by
110*>    diag(R) so that it solves the original system before
111*>    equilibration.
112*> \endverbatim
113*
114*  Arguments:
115*  ==========
116*
117*> \verbatim
118*>     Some optional parameters are bundled in the PARAMS array.  These
119*>     settings determine how refinement is performed, but often the
120*>     defaults are acceptable.  If the defaults are acceptable, users
121*>     can pass NPARAMS = 0 which prevents the source code from accessing
122*>     the PARAMS argument.
123*> \endverbatim
124*>
125*> \param[in] FACT
126*> \verbatim
127*>          FACT is CHARACTER*1
128*>     Specifies whether or not the factored form of the matrix A is
129*>     supplied on entry, and if not, whether the matrix A should be
130*>     equilibrated before it is factored.
131*>       = 'F':  On entry, AF and IPIV contain the factored form of A.
132*>               If EQUED is not 'N', the matrix A has been
133*>               equilibrated with scaling factors given by S.
134*>               A, AF, and IPIV are not modified.
135*>       = 'N':  The matrix A will be copied to AF and factored.
136*>       = 'E':  The matrix A will be equilibrated if necessary, then
137*>               copied to AF and factored.
138*> \endverbatim
139*>
140*> \param[in] UPLO
141*> \verbatim
142*>          UPLO is CHARACTER*1
143*>       = 'U':  Upper triangle of A is stored;
144*>       = 'L':  Lower triangle of A is stored.
145*> \endverbatim
146*>
147*> \param[in] N
148*> \verbatim
149*>          N is INTEGER
150*>     The number of linear equations, i.e., the order of the
151*>     matrix A.  N >= 0.
152*> \endverbatim
153*>
154*> \param[in] NRHS
155*> \verbatim
156*>          NRHS is INTEGER
157*>     The number of right hand sides, i.e., the number of columns
158*>     of the matrices B and X.  NRHS >= 0.
159*> \endverbatim
160*>
161*> \param[in,out] A
162*> \verbatim
163*>          A is COMPLEX*16 array, dimension (LDA,N)
164*>     The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
165*>     upper triangular part of A contains the upper triangular
166*>     part of the matrix A, and the strictly lower triangular
167*>     part of A is not referenced.  If UPLO = 'L', the leading
168*>     N-by-N lower triangular part of A contains the lower
169*>     triangular part of the matrix A, and the strictly upper
170*>     triangular part of A is not referenced.
171*>
172*>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
173*>     diag(S)*A*diag(S).
174*> \endverbatim
175*>
176*> \param[in] LDA
177*> \verbatim
178*>          LDA is INTEGER
179*>     The leading dimension of the array A.  LDA >= max(1,N).
180*> \endverbatim
181*>
182*> \param[in,out] AF
183*> \verbatim
184*>          AF is COMPLEX*16 array, dimension (LDAF,N)
185*>     If FACT = 'F', then AF is an input argument and on entry
186*>     contains the block diagonal matrix D and the multipliers
187*>     used to obtain the factor U or L from the factorization A =
188*>     U*D*U**H or A = L*D*L**H as computed by ZHETRF.
189*>
190*>     If FACT = 'N', then AF is an output argument and on exit
191*>     returns the block diagonal matrix D and the multipliers
192*>     used to obtain the factor U or L from the factorization A =
193*>     U*D*U**H or A = L*D*L**H.
194*> \endverbatim
195*>
196*> \param[in] LDAF
197*> \verbatim
198*>          LDAF is INTEGER
199*>     The leading dimension of the array AF.  LDAF >= max(1,N).
200*> \endverbatim
201*>
202*> \param[in,out] IPIV
203*> \verbatim
204*>          IPIV is INTEGER array, dimension (N)
205*>     If FACT = 'F', then IPIV is an input argument and on entry
206*>     contains details of the interchanges and the block
207*>     structure of D, as determined by ZHETRF.  If IPIV(k) > 0,
208*>     then rows and columns k and IPIV(k) were interchanged and
209*>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
210*>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
211*>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
212*>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
213*>     then rows and columns k+1 and -IPIV(k) were interchanged
214*>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
215*>
216*>     If FACT = 'N', then IPIV is an output argument and on exit
217*>     contains details of the interchanges and the block
218*>     structure of D, as determined by ZHETRF.
219*> \endverbatim
220*>
221*> \param[in,out] EQUED
222*> \verbatim
223*>          EQUED is CHARACTER*1
224*>     Specifies the form of equilibration that was done.
225*>       = 'N':  No equilibration (always true if FACT = 'N').
226*>       = 'Y':  Both row and column equilibration, i.e., A has been
227*>               replaced by diag(S) * A * diag(S).
228*>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
229*>     output argument.
230*> \endverbatim
231*>
232*> \param[in,out] S
233*> \verbatim
234*>          S is DOUBLE PRECISION array, dimension (N)
235*>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
236*>     the left and right by diag(S).  S is an input argument if FACT =
237*>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
238*>     = 'Y', each element of S must be positive.  If S is output, each
239*>     element of S is a power of the radix. If S is input, each element
240*>     of S should be a power of the radix to ensure a reliable solution
241*>     and error estimates. Scaling by powers of the radix does not cause
242*>     rounding errors unless the result underflows or overflows.
243*>     Rounding errors during scaling lead to refining with a matrix that
244*>     is not equivalent to the input matrix, producing error estimates
245*>     that may not be reliable.
246*> \endverbatim
247*>
248*> \param[in,out] B
249*> \verbatim
250*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
251*>     On entry, the N-by-NRHS right hand side matrix B.
252*>     On exit,
253*>     if EQUED = 'N', B is not modified;
254*>     if EQUED = 'Y', B is overwritten by diag(S)*B;
255*> \endverbatim
256*>
257*> \param[in] LDB
258*> \verbatim
259*>          LDB is INTEGER
260*>     The leading dimension of the array B.  LDB >= max(1,N).
261*> \endverbatim
262*>
263*> \param[out] X
264*> \verbatim
265*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
266*>     If INFO = 0, the N-by-NRHS solution matrix X to the original
267*>     system of equations.  Note that A and B are modified on exit if
268*>     EQUED .ne. 'N', and the solution to the equilibrated system is
269*>     inv(diag(S))*X.
270*> \endverbatim
271*>
272*> \param[in] LDX
273*> \verbatim
274*>          LDX is INTEGER
275*>     The leading dimension of the array X.  LDX >= max(1,N).
276*> \endverbatim
277*>
278*> \param[out] RCOND
279*> \verbatim
280*>          RCOND is DOUBLE PRECISION
281*>     Reciprocal scaled condition number.  This is an estimate of the
282*>     reciprocal Skeel condition number of the matrix A after
283*>     equilibration (if done).  If this is less than the machine
284*>     precision (in particular, if it is zero), the matrix is singular
285*>     to working precision.  Note that the error may still be small even
286*>     if this number is very small and the matrix appears ill-
287*>     conditioned.
288*> \endverbatim
289*>
290*> \param[out] RPVGRW
291*> \verbatim
292*>          RPVGRW is DOUBLE PRECISION
293*>     Reciprocal pivot growth.  On exit, this contains the reciprocal
294*>     pivot growth factor norm(A)/norm(U). The "max absolute element"
295*>     norm is used.  If this is much less than 1, then the stability of
296*>     the LU factorization of the (equilibrated) matrix A could be poor.
297*>     This also means that the solution X, estimated condition numbers,
298*>     and error bounds could be unreliable. If factorization fails with
299*>     0<INFO<=N, then this contains the reciprocal pivot growth factor
300*>     for the leading INFO columns of A.
301*> \endverbatim
302*>
303*> \param[out] BERR
304*> \verbatim
305*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
306*>     Componentwise relative backward error.  This is the
307*>     componentwise relative backward error of each solution vector X(j)
308*>     (i.e., the smallest relative change in any element of A or B that
309*>     makes X(j) an exact solution).
310*> \endverbatim
311*>
312*> \param[in] N_ERR_BNDS
313*> \verbatim
314*>          N_ERR_BNDS is INTEGER
315*>     Number of error bounds to return for each right hand side
316*>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
317*>     ERR_BNDS_COMP below.
318*> \endverbatim
319*>
320*> \param[out] ERR_BNDS_NORM
321*> \verbatim
322*>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
323*>     For each right-hand side, this array contains information about
324*>     various error bounds and condition numbers corresponding to the
325*>     normwise relative error, which is defined as follows:
326*>
327*>     Normwise relative error in the ith solution vector:
328*>             max_j (abs(XTRUE(j,i) - X(j,i)))
329*>            ------------------------------
330*>                  max_j abs(X(j,i))
331*>
332*>     The array is indexed by the type of error information as described
333*>     below. There currently are up to three pieces of information
334*>     returned.
335*>
336*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
337*>     right-hand side.
338*>
339*>     The second index in ERR_BNDS_NORM(:,err) contains the following
340*>     three fields:
341*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
342*>              reciprocal condition number is less than the threshold
343*>              sqrt(n) * dlamch('Epsilon').
344*>
345*>     err = 2 "Guaranteed" error bound: The estimated forward error,
346*>              almost certainly within a factor of 10 of the true error
347*>              so long as the next entry is greater than the threshold
348*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
349*>              be trusted if the previous boolean is true.
350*>
351*>     err = 3  Reciprocal condition number: Estimated normwise
352*>              reciprocal condition number.  Compared with the threshold
353*>              sqrt(n) * dlamch('Epsilon') to determine if the error
354*>              estimate is "guaranteed". These reciprocal condition
355*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
356*>              appropriately scaled matrix Z.
357*>              Let Z = S*A, where S scales each row by a power of the
358*>              radix so all absolute row sums of Z are approximately 1.
359*>
360*>     See Lapack Working Note 165 for further details and extra
361*>     cautions.
362*> \endverbatim
363*>
364*> \param[out] ERR_BNDS_COMP
365*> \verbatim
366*>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
367*>     For each right-hand side, this array contains information about
368*>     various error bounds and condition numbers corresponding to the
369*>     componentwise relative error, which is defined as follows:
370*>
371*>     Componentwise relative error in the ith solution vector:
372*>                    abs(XTRUE(j,i) - X(j,i))
373*>             max_j ----------------------
374*>                         abs(X(j,i))
375*>
376*>     The array is indexed by the right-hand side i (on which the
377*>     componentwise relative error depends), and the type of error
378*>     information as described below. There currently are up to three
379*>     pieces of information returned for each right-hand side. If
380*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
381*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
382*>     the first (:,N_ERR_BNDS) entries are returned.
383*>
384*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
385*>     right-hand side.
386*>
387*>     The second index in ERR_BNDS_COMP(:,err) contains the following
388*>     three fields:
389*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
390*>              reciprocal condition number is less than the threshold
391*>              sqrt(n) * dlamch('Epsilon').
392*>
393*>     err = 2 "Guaranteed" error bound: The estimated forward error,
394*>              almost certainly within a factor of 10 of the true error
395*>              so long as the next entry is greater than the threshold
396*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
397*>              be trusted if the previous boolean is true.
398*>
399*>     err = 3  Reciprocal condition number: Estimated componentwise
400*>              reciprocal condition number.  Compared with the threshold
401*>              sqrt(n) * dlamch('Epsilon') to determine if the error
402*>              estimate is "guaranteed". These reciprocal condition
403*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
404*>              appropriately scaled matrix Z.
405*>              Let Z = S*(A*diag(x)), where x is the solution for the
406*>              current right-hand side and S scales each row of
407*>              A*diag(x) by a power of the radix so all absolute row
408*>              sums of Z are approximately 1.
409*>
410*>     See Lapack Working Note 165 for further details and extra
411*>     cautions.
412*> \endverbatim
413*>
414*> \param[in] NPARAMS
415*> \verbatim
416*>          NPARAMS is INTEGER
417*>     Specifies the number of parameters set in PARAMS.  If <= 0, the
418*>     PARAMS array is never referenced and default values are used.
419*> \endverbatim
420*>
421*> \param[in,out] PARAMS
422*> \verbatim
423*>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
424*>     Specifies algorithm parameters.  If an entry is < 0.0, then
425*>     that entry will be filled with default value used for that
426*>     parameter.  Only positions up to NPARAMS are accessed; defaults
427*>     are used for higher-numbered parameters.
428*>
429*>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
430*>            refinement or not.
431*>         Default: 1.0D+0
432*>            = 0.0:  No refinement is performed, and no error bounds are
433*>                    computed.
434*>            = 1.0:  Use the extra-precise refinement algorithm.
435*>              (other values are reserved for future use)
436*>
437*>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
438*>            computations allowed for refinement.
439*>         Default: 10
440*>         Aggressive: Set to 100 to permit convergence using approximate
441*>                     factorizations or factorizations other than LU. If
442*>                     the factorization uses a technique other than
443*>                     Gaussian elimination, the guarantees in
444*>                     err_bnds_norm and err_bnds_comp may no longer be
445*>                     trustworthy.
446*>
447*>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
448*>            will attempt to find a solution with small componentwise
449*>            relative error in the double-precision algorithm.  Positive
450*>            is true, 0.0 is false.
451*>         Default: 1.0 (attempt componentwise convergence)
452*> \endverbatim
453*>
454*> \param[out] WORK
455*> \verbatim
456*>          WORK is COMPLEX*16 array, dimension (5*N)
457*> \endverbatim
458*>
459*> \param[out] RWORK
460*> \verbatim
461*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
462*> \endverbatim
463*>
464*> \param[out] INFO
465*> \verbatim
466*>          INFO is INTEGER
467*>       = 0:  Successful exit. The solution to every right-hand side is
468*>         guaranteed.
469*>       < 0:  If INFO = -i, the i-th argument had an illegal value
470*>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
471*>         has been completed, but the factor U is exactly singular, so
472*>         the solution and error bounds could not be computed. RCOND = 0
473*>         is returned.
474*>       = N+J: The solution corresponding to the Jth right-hand side is
475*>         not guaranteed. The solutions corresponding to other right-
476*>         hand sides K with K > J may not be guaranteed as well, but
477*>         only the first such right-hand side is reported. If a small
478*>         componentwise error is not requested (PARAMS(3) = 0.0) then
479*>         the Jth right-hand side is the first with a normwise error
480*>         bound that is not guaranteed (the smallest J such
481*>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
482*>         the Jth right-hand side is the first with either a normwise or
483*>         componentwise error bound that is not guaranteed (the smallest
484*>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
485*>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
486*>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
487*>         about all of the right-hand sides check ERR_BNDS_NORM or
488*>         ERR_BNDS_COMP.
489*> \endverbatim
490*
491*  Authors:
492*  ========
493*
494*> \author Univ. of Tennessee
495*> \author Univ. of California Berkeley
496*> \author Univ. of Colorado Denver
497*> \author NAG Ltd.
498*
499*> \ingroup complex16HEsolve
500*
501*  =====================================================================
502      SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
503     $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
504     $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
505     $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
506*
507*  -- LAPACK driver routine --
508*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
509*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
510*
511*     .. Scalar Arguments ..
512      CHARACTER          EQUED, FACT, UPLO
513      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
514     $                   N_ERR_BNDS
515      DOUBLE PRECISION   RCOND, RPVGRW
516*     ..
517*     .. Array Arguments ..
518      INTEGER            IPIV( * )
519      COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
520     $                   WORK( * ), X( LDX, * )
521      DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
522     $                   ERR_BNDS_NORM( NRHS, * ),
523     $                   ERR_BNDS_COMP( NRHS, * )
524*     ..
525*
526*  ==================================================================
527*
528*     .. Parameters ..
529      DOUBLE PRECISION   ZERO, ONE
530      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
531      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
532      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
533      INTEGER            CMP_ERR_I, PIV_GROWTH_I
534      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
535     $                   BERR_I = 3 )
536      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
537      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
538     $                   PIV_GROWTH_I = 9 )
539*     ..
540*     .. Local Scalars ..
541      LOGICAL            EQUIL, NOFACT, RCEQU
542      INTEGER            INFEQU, J
543      DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
544*     ..
545*     .. External Functions ..
546      EXTERNAL           LSAME, DLAMCH,  ZLA_HERPVGRW
547      LOGICAL            LSAME
548      DOUBLE PRECISION   DLAMCH, ZLA_HERPVGRW
549*     ..
550*     .. External Subroutines ..
551      EXTERNAL           ZHEEQUB, ZHETRF, ZHETRS, ZLACPY,
552     $                   ZLAQHE, XERBLA, ZLASCL2, ZHERFSX
553*     ..
554*     .. Intrinsic Functions ..
555      INTRINSIC          MAX, MIN
556*     ..
557*     .. Executable Statements ..
558*
559      INFO = 0
560      NOFACT = LSAME( FACT, 'N' )
561      EQUIL = LSAME( FACT, 'E' )
562      SMLNUM = DLAMCH( 'Safe minimum' )
563      BIGNUM = ONE / SMLNUM
564      IF( NOFACT .OR. EQUIL ) THEN
565         EQUED = 'N'
566         RCEQU = .FALSE.
567      ELSE
568         RCEQU = LSAME( EQUED, 'Y' )
569      ENDIF
570*
571*     Default is failure.  If an input parameter is wrong or
572*     factorization fails, make everything look horrible.  Only the
573*     pivot growth is set here, the rest is initialized in ZHERFSX.
574*
575      RPVGRW = ZERO
576*
577*     Test the input parameters.  PARAMS is not tested until ZHERFSX.
578*
579      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
580     $     LSAME( FACT, 'F' ) ) THEN
581         INFO = -1
582      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
583     $         .NOT.LSAME( UPLO, 'L' ) ) THEN
584         INFO = -2
585      ELSE IF( N.LT.0 ) THEN
586         INFO = -3
587      ELSE IF( NRHS.LT.0 ) THEN
588         INFO = -4
589      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
590         INFO = -6
591      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
592         INFO = -8
593      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
594     $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
595         INFO = -9
596      ELSE
597         IF ( RCEQU ) THEN
598            SMIN = BIGNUM
599            SMAX = ZERO
600            DO 10 J = 1, N
601               SMIN = MIN( SMIN, S( J ) )
602               SMAX = MAX( SMAX, S( J ) )
603 10         CONTINUE
604            IF( SMIN.LE.ZERO ) THEN
605               INFO = -10
606            ELSE IF( N.GT.0 ) THEN
607               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
608            ELSE
609               SCOND = ONE
610            END IF
611         END IF
612         IF( INFO.EQ.0 ) THEN
613            IF( LDB.LT.MAX( 1, N ) ) THEN
614               INFO = -12
615            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
616               INFO = -14
617            END IF
618         END IF
619      END IF
620*
621      IF( INFO.NE.0 ) THEN
622         CALL XERBLA( 'ZHESVXX', -INFO )
623         RETURN
624      END IF
625*
626      IF( EQUIL ) THEN
627*
628*     Compute row and column scalings to equilibrate the matrix A.
629*
630         CALL ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
631         IF( INFEQU.EQ.0 ) THEN
632*
633*     Equilibrate the matrix.
634*
635            CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
636            RCEQU = LSAME( EQUED, 'Y' )
637         END IF
638      END IF
639*
640*     Scale the right-hand side.
641*
642      IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
643*
644      IF( NOFACT .OR. EQUIL ) THEN
645*
646*        Compute the LDL^H or UDU^H factorization of A.
647*
648         CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
649         CALL ZHETRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
650*
651*        Return if INFO is non-zero.
652*
653         IF( INFO.GT.0 ) THEN
654*
655*           Pivot in column INFO is exactly 0
656*           Compute the reciprocal pivot growth factor of the
657*           leading rank-deficient INFO columns of A.
658*
659            IF( N.GT.0 )
660     $           RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
661     $           IPIV, RWORK )
662            RETURN
663         END IF
664      END IF
665*
666*     Compute the reciprocal pivot growth factor RPVGRW.
667*
668      IF( N.GT.0 )
669     $     RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
670     $     RWORK )
671*
672*     Compute the solution matrix X.
673*
674      CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
675      CALL ZHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
676*
677*     Use iterative refinement to improve the computed solution and
678*     compute error bounds and backward error estimates for it.
679*
680      CALL ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
681     $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
682     $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
683*
684*     Scale solutions.
685*
686      IF ( RCEQU ) THEN
687         CALL ZLASCL2 ( N, NRHS, S, X, LDX )
688      END IF
689*
690      RETURN
691*
692*     End of ZHESVXX
693*
694      END
695