1*> \brief \b CGELQT3
2*
3*  Definition:
4*  ===========
5*
6*       RECURSIVE SUBROUTINE CGELQT3( M, N, A, LDA, T, LDT, INFO )
7*
8*       .. Scalar Arguments ..
9*       INTEGER   INFO, LDA, M, N, LDT
10*       ..
11*       .. Array Arguments ..
12*       COMPLEX   A( LDA, * ), T( LDT, * )
13*       ..
14*
15*
16*> \par Purpose:
17*  =============
18*>
19*> \verbatim
20*>
21*> CGELQT3 recursively computes a LQ factorization of a complex M-by-N
22*> matrix A, using the compact WY representation of Q.
23*>
24*> Based on the algorithm of Elmroth and Gustavson,
25*> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
26*> \endverbatim
27*
28*  Arguments:
29*  ==========
30*
31*> \param[in] M
32*> \verbatim
33*>          M is INTEGER
34*>          The number of rows of the matrix A.  M =< N.
35*> \endverbatim
36*>
37*> \param[in] N
38*> \verbatim
39*>          N is INTEGER
40*>          The number of columns of the matrix A.  N >= 0.
41*> \endverbatim
42*>
43*> \param[in,out] A
44*> \verbatim
45*>          A is COMPLEX array, dimension (LDA,N)
46*>          On entry, the complex M-by-N matrix A.  On exit, the elements on and
47*>          below the diagonal contain the N-by-N lower triangular matrix L; the
48*>          elements above the diagonal are the rows of V.  See below for
49*>          further details.
50*> \endverbatim
51*>
52*> \param[in] LDA
53*> \verbatim
54*>          LDA is INTEGER
55*>          The leading dimension of the array A.  LDA >= max(1,M).
56*> \endverbatim
57*>
58*> \param[out] T
59*> \verbatim
60*>          T is COMPLEX array, dimension (LDT,N)
61*>          The N-by-N upper triangular factor of the block reflector.
62*>          The elements on and above the diagonal contain the block
63*>          reflector T; the elements below the diagonal are not used.
64*>          See below for further details.
65*> \endverbatim
66*>
67*> \param[in] LDT
68*> \verbatim
69*>          LDT is INTEGER
70*>          The leading dimension of the array T.  LDT >= max(1,N).
71*> \endverbatim
72*>
73*> \param[out] INFO
74*> \verbatim
75*>          INFO is INTEGER
76*>          = 0: successful exit
77*>          < 0: if INFO = -i, the i-th argument had an illegal value
78*> \endverbatim
79*
80*  Authors:
81*  ========
82*
83*> \author Univ. of Tennessee
84*> \author Univ. of California Berkeley
85*> \author Univ. of Colorado Denver
86*> \author NAG Ltd.
87*
88*> \ingroup doubleGEcomputational
89*
90*> \par Further Details:
91*  =====================
92*>
93*> \verbatim
94*>
95*>  The matrix V stores the elementary reflectors H(i) in the i-th row
96*>  above the diagonal. For example, if M=5 and N=3, the matrix V is
97*>
98*>               V = (  1  v1 v1 v1 v1 )
99*>                   (     1  v2 v2 v2 )
100*>                   (     1  v3 v3 v3 )
101*>
102*>
103*>  where the vi's represent the vectors which define H(i), which are returned
104*>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
105*>  block reflector H is then given by
106*>
107*>               H = I - V * T * V**T
108*>
109*>  where V**T is the transpose of V.
110*>
111*>  For details of the algorithm, see Elmroth and Gustavson (cited above).
112*> \endverbatim
113*>
114*  =====================================================================
115      RECURSIVE SUBROUTINE CGELQT3( M, N, A, LDA, T, LDT, INFO )
116*
117*  -- LAPACK computational routine --
118*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
119*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
120*
121*     .. Scalar Arguments ..
122      INTEGER   INFO, LDA, M, N, LDT
123*     ..
124*     .. Array Arguments ..
125      COMPLEX   A( LDA, * ), T( LDT, * )
126*     ..
127*
128*  =====================================================================
129*
130*     .. Parameters ..
131      COMPLEX   ONE, ZERO
132      PARAMETER ( ONE = (1.0E+00,0.0E+00) )
133      PARAMETER ( ZERO = (0.0E+00,0.0E+00))
134*     ..
135*     .. Local Scalars ..
136      INTEGER   I, I1, J, J1, M1, M2, IINFO
137*     ..
138*     .. External Subroutines ..
139      EXTERNAL  CLARFG, CTRMM, CGEMM, XERBLA
140*     ..
141*     .. Executable Statements ..
142*
143      INFO = 0
144      IF( M .LT. 0 ) THEN
145         INFO = -1
146      ELSE IF( N .LT. M ) THEN
147         INFO = -2
148      ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
149         INFO = -4
150      ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
151         INFO = -6
152      END IF
153      IF( INFO.NE.0 ) THEN
154         CALL XERBLA( 'CGELQT3', -INFO )
155         RETURN
156      END IF
157*
158      IF( M.EQ.1 ) THEN
159*
160*        Compute Householder transform when M=1
161*
162         CALL CLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
163         T(1,1)=CONJG(T(1,1))
164*
165      ELSE
166*
167*        Otherwise, split A into blocks...
168*
169         M1 = M/2
170         M2 = M-M1
171         I1 = MIN( M1+1, M )
172         J1 = MIN( M+1, N )
173*
174*        Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
175*
176         CALL CGELQT3( M1, N, A, LDA, T, LDT, IINFO )
177*
178*        Compute A(J1:M,1:N) =  A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
179*
180         DO I=1,M2
181            DO J=1,M1
182               T(  I+M1, J ) = A( I+M1, J )
183            END DO
184         END DO
185         CALL CTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE,
186     &               A, LDA, T( I1, 1 ), LDT )
187*
188         CALL CGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
189     &               A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
190*
191         CALL CTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
192     &               T, LDT, T( I1, 1 ), LDT )
193*
194         CALL CGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
195     &                A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
196*
197         CALL CTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
198     &               A, LDA, T( I1, 1 ), LDT )
199*
200         DO I=1,M2
201            DO J=1,M1
202               A(  I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
203               T( I+M1, J )= ZERO
204            END DO
205         END DO
206*
207*        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
208*
209         CALL CGELQT3( M2, N-M1, A( I1, I1 ), LDA,
210     &                T( I1, I1 ), LDT, IINFO )
211*
212*        Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
213*
214         DO I=1,M2
215            DO J=1,M1
216               T( J, I+M1  ) = (A( J, I+M1 ))
217            END DO
218         END DO
219*
220         CALL CTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE,
221     &               A( I1, I1 ), LDA, T( 1, I1 ), LDT )
222*
223         CALL CGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
224     &               A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
225*
226         CALL CTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
227     &               T( 1, I1 ), LDT )
228*
229         CALL CTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
230     &               T( I1, I1 ), LDT, T( 1, I1 ), LDT )
231*
232*
233*
234*        Y = (Y1,Y2); L = [ L1            0  ];  T = [T1 T3]
235*                         [ A(1:N1,J1:N)  L2 ]       [ 0 T2]
236*
237      END IF
238*
239      RETURN
240*
241*     End of CGELQT3
242*
243      END
244