1*> \brief \b CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_HERFSX_EXTENDED + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_herfsx_extended.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_herfsx_extended.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_herfsx_extended.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLA_HERFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
22*                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
23*                                       Y, LDY, BERR_OUT, N_NORMS,
24*                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
25*                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
26*                                       RTHRESH, DZ_UB, IGNORE_CWISE,
27*                                       INFO )
28*
29*       .. Scalar Arguments ..
30*       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
31*      $                   N_NORMS, ITHRESH
32*       CHARACTER          UPLO
33*       LOGICAL            COLEQU, IGNORE_CWISE
34*       REAL               RTHRESH, DZ_UB
35*       ..
36*       .. Array Arguments ..
37*       INTEGER            IPIV( * )
38*       COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
39*      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
40*       REAL               C( * ), AYB( * ), RCOND, BERR_OUT( * ),
41*      $                   ERR_BNDS_NORM( NRHS, * ),
42*      $                   ERR_BNDS_COMP( NRHS, * )
43*       ..
44*
45*
46*> \par Purpose:
47*  =============
48*>
49*> \verbatim
50*>
51*> CLA_HERFSX_EXTENDED improves the computed solution to a system of
52*> linear equations by performing extra-precise iterative refinement
53*> and provides error bounds and backward error estimates for the solution.
54*> This subroutine is called by CHERFSX to perform iterative refinement.
55*> In addition to normwise error bound, the code provides maximum
56*> componentwise error bound if possible. See comments for ERR_BNDS_NORM
57*> and ERR_BNDS_COMP for details of the error bounds. Note that this
58*> subroutine is only resonsible for setting the second fields of
59*> ERR_BNDS_NORM and ERR_BNDS_COMP.
60*> \endverbatim
61*
62*  Arguments:
63*  ==========
64*
65*> \param[in] PREC_TYPE
66*> \verbatim
67*>          PREC_TYPE is INTEGER
68*>     Specifies the intermediate precision to be used in refinement.
69*>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
70*>          = 'S':  Single
71*>          = 'D':  Double
72*>          = 'I':  Indigenous
73*>          = 'X' or 'E':  Extra
74*> \endverbatim
75*>
76*> \param[in] UPLO
77*> \verbatim
78*>          UPLO is CHARACTER*1
79*>       = 'U':  Upper triangle of A is stored;
80*>       = 'L':  Lower triangle of A is stored.
81*> \endverbatim
82*>
83*> \param[in] N
84*> \verbatim
85*>          N is INTEGER
86*>     The number of linear equations, i.e., the order of the
87*>     matrix A.  N >= 0.
88*> \endverbatim
89*>
90*> \param[in] NRHS
91*> \verbatim
92*>          NRHS is INTEGER
93*>     The number of right-hand-sides, i.e., the number of columns of the
94*>     matrix B.
95*> \endverbatim
96*>
97*> \param[in] A
98*> \verbatim
99*>          A is COMPLEX array, dimension (LDA,N)
100*>     On entry, the N-by-N matrix A.
101*> \endverbatim
102*>
103*> \param[in] LDA
104*> \verbatim
105*>          LDA is INTEGER
106*>     The leading dimension of the array A.  LDA >= max(1,N).
107*> \endverbatim
108*>
109*> \param[in] AF
110*> \verbatim
111*>          AF is COMPLEX array, dimension (LDAF,N)
112*>     The block diagonal matrix D and the multipliers used to
113*>     obtain the factor U or L as computed by CHETRF.
114*> \endverbatim
115*>
116*> \param[in] LDAF
117*> \verbatim
118*>          LDAF is INTEGER
119*>     The leading dimension of the array AF.  LDAF >= max(1,N).
120*> \endverbatim
121*>
122*> \param[in] IPIV
123*> \verbatim
124*>          IPIV is INTEGER array, dimension (N)
125*>     Details of the interchanges and the block structure of D
126*>     as determined by CHETRF.
127*> \endverbatim
128*>
129*> \param[in] COLEQU
130*> \verbatim
131*>          COLEQU is LOGICAL
132*>     If .TRUE. then column equilibration was done to A before calling
133*>     this routine. This is needed to compute the solution and error
134*>     bounds correctly.
135*> \endverbatim
136*>
137*> \param[in] C
138*> \verbatim
139*>          C is REAL array, dimension (N)
140*>     The column scale factors for A. If COLEQU = .FALSE., C
141*>     is not accessed. If C is input, each element of C should be a power
142*>     of the radix to ensure a reliable solution and error estimates.
143*>     Scaling by powers of the radix does not cause rounding errors unless
144*>     the result underflows or overflows. Rounding errors during scaling
145*>     lead to refining with a matrix that is not equivalent to the
146*>     input matrix, producing error estimates that may not be
147*>     reliable.
148*> \endverbatim
149*>
150*> \param[in] B
151*> \verbatim
152*>          B is COMPLEX array, dimension (LDB,NRHS)
153*>     The right-hand-side matrix B.
154*> \endverbatim
155*>
156*> \param[in] LDB
157*> \verbatim
158*>          LDB is INTEGER
159*>     The leading dimension of the array B.  LDB >= max(1,N).
160*> \endverbatim
161*>
162*> \param[in,out] Y
163*> \verbatim
164*>          Y is COMPLEX array, dimension (LDY,NRHS)
165*>     On entry, the solution matrix X, as computed by CHETRS.
166*>     On exit, the improved solution matrix Y.
167*> \endverbatim
168*>
169*> \param[in] LDY
170*> \verbatim
171*>          LDY is INTEGER
172*>     The leading dimension of the array Y.  LDY >= max(1,N).
173*> \endverbatim
174*>
175*> \param[out] BERR_OUT
176*> \verbatim
177*>          BERR_OUT is REAL array, dimension (NRHS)
178*>     On exit, BERR_OUT(j) contains the componentwise relative backward
179*>     error for right-hand-side j from the formula
180*>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
181*>     where abs(Z) is the componentwise absolute value of the matrix
182*>     or vector Z. This is computed by CLA_LIN_BERR.
183*> \endverbatim
184*>
185*> \param[in] N_NORMS
186*> \verbatim
187*>          N_NORMS is INTEGER
188*>     Determines which error bounds to return (see ERR_BNDS_NORM
189*>     and ERR_BNDS_COMP).
190*>     If N_NORMS >= 1 return normwise error bounds.
191*>     If N_NORMS >= 2 return componentwise error bounds.
192*> \endverbatim
193*>
194*> \param[in,out] ERR_BNDS_NORM
195*> \verbatim
196*>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
197*>     For each right-hand side, this array contains information about
198*>     various error bounds and condition numbers corresponding to the
199*>     normwise relative error, which is defined as follows:
200*>
201*>     Normwise relative error in the ith solution vector:
202*>             max_j (abs(XTRUE(j,i) - X(j,i)))
203*>            ------------------------------
204*>                  max_j abs(X(j,i))
205*>
206*>     The array is indexed by the type of error information as described
207*>     below. There currently are up to three pieces of information
208*>     returned.
209*>
210*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
211*>     right-hand side.
212*>
213*>     The second index in ERR_BNDS_NORM(:,err) contains the following
214*>     three fields:
215*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
216*>              reciprocal condition number is less than the threshold
217*>              sqrt(n) * slamch('Epsilon').
218*>
219*>     err = 2 "Guaranteed" error bound: The estimated forward error,
220*>              almost certainly within a factor of 10 of the true error
221*>              so long as the next entry is greater than the threshold
222*>              sqrt(n) * slamch('Epsilon'). This error bound should only
223*>              be trusted if the previous boolean is true.
224*>
225*>     err = 3  Reciprocal condition number: Estimated normwise
226*>              reciprocal condition number.  Compared with the threshold
227*>              sqrt(n) * slamch('Epsilon') to determine if the error
228*>              estimate is "guaranteed". These reciprocal condition
229*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
230*>              appropriately scaled matrix Z.
231*>              Let Z = S*A, where S scales each row by a power of the
232*>              radix so all absolute row sums of Z are approximately 1.
233*>
234*>     This subroutine is only responsible for setting the second field
235*>     above.
236*>     See Lapack Working Note 165 for further details and extra
237*>     cautions.
238*> \endverbatim
239*>
240*> \param[in,out] ERR_BNDS_COMP
241*> \verbatim
242*>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
243*>     For each right-hand side, this array contains information about
244*>     various error bounds and condition numbers corresponding to the
245*>     componentwise relative error, which is defined as follows:
246*>
247*>     Componentwise relative error in the ith solution vector:
248*>                    abs(XTRUE(j,i) - X(j,i))
249*>             max_j ----------------------
250*>                         abs(X(j,i))
251*>
252*>     The array is indexed by the right-hand side i (on which the
253*>     componentwise relative error depends), and the type of error
254*>     information as described below. There currently are up to three
255*>     pieces of information returned for each right-hand side. If
256*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
257*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
258*>     the first (:,N_ERR_BNDS) entries are returned.
259*>
260*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
261*>     right-hand side.
262*>
263*>     The second index in ERR_BNDS_COMP(:,err) contains the following
264*>     three fields:
265*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
266*>              reciprocal condition number is less than the threshold
267*>              sqrt(n) * slamch('Epsilon').
268*>
269*>     err = 2 "Guaranteed" error bound: The estimated forward error,
270*>              almost certainly within a factor of 10 of the true error
271*>              so long as the next entry is greater than the threshold
272*>              sqrt(n) * slamch('Epsilon'). This error bound should only
273*>              be trusted if the previous boolean is true.
274*>
275*>     err = 3  Reciprocal condition number: Estimated componentwise
276*>              reciprocal condition number.  Compared with the threshold
277*>              sqrt(n) * slamch('Epsilon') to determine if the error
278*>              estimate is "guaranteed". These reciprocal condition
279*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
280*>              appropriately scaled matrix Z.
281*>              Let Z = S*(A*diag(x)), where x is the solution for the
282*>              current right-hand side and S scales each row of
283*>              A*diag(x) by a power of the radix so all absolute row
284*>              sums of Z are approximately 1.
285*>
286*>     This subroutine is only responsible for setting the second field
287*>     above.
288*>     See Lapack Working Note 165 for further details and extra
289*>     cautions.
290*> \endverbatim
291*>
292*> \param[in] RES
293*> \verbatim
294*>          RES is COMPLEX array, dimension (N)
295*>     Workspace to hold the intermediate residual.
296*> \endverbatim
297*>
298*> \param[in] AYB
299*> \verbatim
300*>          AYB is REAL array, dimension (N)
301*>     Workspace.
302*> \endverbatim
303*>
304*> \param[in] DY
305*> \verbatim
306*>          DY is COMPLEX array, dimension (N)
307*>     Workspace to hold the intermediate solution.
308*> \endverbatim
309*>
310*> \param[in] Y_TAIL
311*> \verbatim
312*>          Y_TAIL is COMPLEX array, dimension (N)
313*>     Workspace to hold the trailing bits of the intermediate solution.
314*> \endverbatim
315*>
316*> \param[in] RCOND
317*> \verbatim
318*>          RCOND is REAL
319*>     Reciprocal scaled condition number.  This is an estimate of the
320*>     reciprocal Skeel condition number of the matrix A after
321*>     equilibration (if done).  If this is less than the machine
322*>     precision (in particular, if it is zero), the matrix is singular
323*>     to working precision.  Note that the error may still be small even
324*>     if this number is very small and the matrix appears ill-
325*>     conditioned.
326*> \endverbatim
327*>
328*> \param[in] ITHRESH
329*> \verbatim
330*>          ITHRESH is INTEGER
331*>     The maximum number of residual computations allowed for
332*>     refinement. The default is 10. For 'aggressive' set to 100 to
333*>     permit convergence using approximate factorizations or
334*>     factorizations other than LU. If the factorization uses a
335*>     technique other than Gaussian elimination, the guarantees in
336*>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
337*> \endverbatim
338*>
339*> \param[in] RTHRESH
340*> \verbatim
341*>          RTHRESH is REAL
342*>     Determines when to stop refinement if the error estimate stops
343*>     decreasing. Refinement will stop when the next solution no longer
344*>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
345*>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
346*>     default value is 0.5. For 'aggressive' set to 0.9 to permit
347*>     convergence on extremely ill-conditioned matrices. See LAWN 165
348*>     for more details.
349*> \endverbatim
350*>
351*> \param[in] DZ_UB
352*> \verbatim
353*>          DZ_UB is REAL
354*>     Determines when to start considering componentwise convergence.
355*>     Componentwise convergence is only considered after each component
356*>     of the solution Y is stable, which we define as the relative
357*>     change in each component being less than DZ_UB. The default value
358*>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
359*>     more details.
360*> \endverbatim
361*>
362*> \param[in] IGNORE_CWISE
363*> \verbatim
364*>          IGNORE_CWISE is LOGICAL
365*>     If .TRUE. then ignore componentwise convergence. Default value
366*>     is .FALSE..
367*> \endverbatim
368*>
369*> \param[out] INFO
370*> \verbatim
371*>          INFO is INTEGER
372*>       = 0:  Successful exit.
373*>       < 0:  if INFO = -i, the ith argument to CLA_HERFSX_EXTENDED had an illegal
374*>             value
375*> \endverbatim
376*
377*  Authors:
378*  ========
379*
380*> \author Univ. of Tennessee
381*> \author Univ. of California Berkeley
382*> \author Univ. of Colorado Denver
383*> \author NAG Ltd.
384*
385*> \ingroup complexHEcomputational
386*
387*  =====================================================================
388      SUBROUTINE CLA_HERFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
389     $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
390     $                                Y, LDY, BERR_OUT, N_NORMS,
391     $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
392     $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
393     $                                RTHRESH, DZ_UB, IGNORE_CWISE,
394     $                                INFO )
395*
396*  -- LAPACK computational routine --
397*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
398*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
399*
400*     .. Scalar Arguments ..
401      INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
402     $                   N_NORMS, ITHRESH
403      CHARACTER          UPLO
404      LOGICAL            COLEQU, IGNORE_CWISE
405      REAL               RTHRESH, DZ_UB
406*     ..
407*     .. Array Arguments ..
408      INTEGER            IPIV( * )
409      COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
410     $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
411      REAL               C( * ), AYB( * ), RCOND, BERR_OUT( * ),
412     $                   ERR_BNDS_NORM( NRHS, * ),
413     $                   ERR_BNDS_COMP( NRHS, * )
414*     ..
415*
416*  =====================================================================
417*
418*     .. Local Scalars ..
419      INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
420     $                   Y_PREC_STATE
421      REAL               YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
422     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
423     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
424     $                   EPS, HUGEVAL, INCR_THRESH
425      LOGICAL            INCR_PREC, UPPER
426      COMPLEX            ZDUM
427*     ..
428*     .. Parameters ..
429      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
430     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
431     $                   EXTRA_Y
432      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
433     $                   CONV_STATE = 2, NOPROG_STATE = 3 )
434      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
435     $                   EXTRA_Y = 2 )
436      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
437      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
438      INTEGER            CMP_ERR_I, PIV_GROWTH_I
439      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
440     $                   BERR_I = 3 )
441      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
442      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
443     $                   PIV_GROWTH_I = 9 )
444      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
445     $                   LA_LINRX_CWISE_I
446      PARAMETER          ( LA_LINRX_ITREF_I = 1,
447     $                   LA_LINRX_ITHRESH_I = 2 )
448      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
449      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
450     $                   LA_LINRX_RCOND_I
451      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
452      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
453*     ..
454*     .. External Functions ..
455      LOGICAL            LSAME
456      EXTERNAL           ILAUPLO
457      INTEGER            ILAUPLO
458*     ..
459*     .. External Subroutines ..
460      EXTERNAL           CAXPY, CCOPY, CHETRS, CHEMV, BLAS_CHEMV_X,
461     $                   BLAS_CHEMV2_X, CLA_HEAMV, CLA_WWADDW,
462     $                   CLA_LIN_BERR
463      REAL               SLAMCH
464*     ..
465*     .. Intrinsic Functions ..
466      INTRINSIC          ABS, REAL, AIMAG, MAX, MIN
467*     ..
468*     .. Statement Functions ..
469      REAL               CABS1
470*     ..
471*     .. Statement Function Definitions ..
472      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
473*     ..
474*     .. Executable Statements ..
475*
476      INFO = 0
477      UPPER = LSAME( UPLO, 'U' )
478      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
479         INFO = -2
480      ELSE IF( N.LT.0 ) THEN
481         INFO = -3
482      ELSE IF( NRHS.LT.0 ) THEN
483         INFO = -4
484      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
485         INFO = -6
486      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
487         INFO = -8
488      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
489         INFO = -13
490      ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
491         INFO = -15
492      END IF
493      IF( INFO.NE.0 ) THEN
494         CALL XERBLA( 'CLA_HERFSX_EXTENDED', -INFO )
495         RETURN
496      END IF
497      EPS = SLAMCH( 'Epsilon' )
498      HUGEVAL = SLAMCH( 'Overflow' )
499*     Force HUGEVAL to Inf
500      HUGEVAL = HUGEVAL * HUGEVAL
501*     Using HUGEVAL may lead to spurious underflows.
502      INCR_THRESH = REAL( N ) * EPS
503
504      IF ( LSAME ( UPLO, 'L' ) ) THEN
505         UPLO2 = ILAUPLO( 'L' )
506      ELSE
507         UPLO2 = ILAUPLO( 'U' )
508      ENDIF
509
510      DO J = 1, NRHS
511         Y_PREC_STATE = EXTRA_RESIDUAL
512         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
513            DO I = 1, N
514               Y_TAIL( I ) = 0.0
515            END DO
516         END IF
517
518         DXRAT = 0.0
519         DXRATMAX = 0.0
520         DZRAT = 0.0
521         DZRATMAX = 0.0
522         FINAL_DX_X = HUGEVAL
523         FINAL_DZ_Z = HUGEVAL
524         PREVNORMDX = HUGEVAL
525         PREV_DZ_Z = HUGEVAL
526         DZ_Z = HUGEVAL
527         DX_X = HUGEVAL
528
529         X_STATE = WORKING_STATE
530         Z_STATE = UNSTABLE_STATE
531         INCR_PREC = .FALSE.
532
533         DO CNT = 1, ITHRESH
534*
535*         Compute residual RES = B_s - op(A_s) * Y,
536*             op(A) = A, A**T, or A**H depending on TRANS (and type).
537*
538            CALL CCOPY( N, B( 1, J ), 1, RES, 1 )
539            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
540               CALL CHEMV( UPLO, N, CMPLX(-1.0), A, LDA, Y( 1, J ), 1,
541     $              CMPLX(1.0), RES, 1 )
542            ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
543               CALL BLAS_CHEMV_X( UPLO2, N, CMPLX(-1.0), A, LDA,
544     $              Y( 1, J ), 1, CMPLX(1.0), RES, 1, PREC_TYPE)
545            ELSE
546               CALL BLAS_CHEMV2_X(UPLO2, N, CMPLX(-1.0), A, LDA,
547     $              Y(1, J), Y_TAIL, 1, CMPLX(1.0), RES, 1, PREC_TYPE)
548            END IF
549
550!         XXX: RES is no longer needed.
551            CALL CCOPY( N, RES, 1, DY, 1 )
552            CALL CHETRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
553*
554*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
555*
556            NORMX = 0.0
557            NORMY = 0.0
558            NORMDX = 0.0
559            DZ_Z = 0.0
560            YMIN = HUGEVAL
561
562            DO I = 1, N
563               YK = CABS1( Y( I, J ) )
564               DYK = CABS1( DY( I ) )
565
566               IF (YK .NE. 0.0) THEN
567                  DZ_Z = MAX( DZ_Z, DYK / YK )
568               ELSE IF ( DYK .NE. 0.0 ) THEN
569                  DZ_Z = HUGEVAL
570               END IF
571
572               YMIN = MIN( YMIN, YK )
573
574               NORMY = MAX( NORMY, YK )
575
576               IF ( COLEQU ) THEN
577                  NORMX = MAX( NORMX, YK * C( I ) )
578                  NORMDX = MAX( NORMDX, DYK * C( I ) )
579               ELSE
580                  NORMX = NORMY
581                  NORMDX = MAX( NORMDX, DYK )
582               END IF
583            END DO
584
585            IF ( NORMX .NE. 0.0 ) THEN
586               DX_X = NORMDX / NORMX
587            ELSE IF ( NORMDX .EQ. 0.0 ) THEN
588               DX_X = 0.0
589            ELSE
590               DX_X = HUGEVAL
591            END IF
592
593            DXRAT = NORMDX / PREVNORMDX
594            DZRAT = DZ_Z / PREV_DZ_Z
595*
596*         Check termination criteria.
597*
598            IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
599     $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
600     $           INCR_PREC = .TRUE.
601
602            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
603     $           X_STATE = WORKING_STATE
604            IF ( X_STATE .EQ. WORKING_STATE ) THEN
605               IF ( DX_X .LE. EPS ) THEN
606                  X_STATE = CONV_STATE
607               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
608                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
609                     INCR_PREC = .TRUE.
610                  ELSE
611                     X_STATE = NOPROG_STATE
612                  END IF
613               ELSE
614                  IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
615               END IF
616               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
617            END IF
618
619            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
620     $           Z_STATE = WORKING_STATE
621            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
622     $           Z_STATE = WORKING_STATE
623            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
624               IF ( DZ_Z .LE. EPS ) THEN
625                  Z_STATE = CONV_STATE
626               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
627                  Z_STATE = UNSTABLE_STATE
628                  DZRATMAX = 0.0
629                  FINAL_DZ_Z = HUGEVAL
630               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
631                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
632                     INCR_PREC = .TRUE.
633                  ELSE
634                     Z_STATE = NOPROG_STATE
635                  END IF
636               ELSE
637                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
638               END IF
639               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
640            END IF
641
642            IF ( X_STATE.NE.WORKING_STATE.AND.
643     $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
644     $           GOTO 666
645
646            IF ( INCR_PREC ) THEN
647               INCR_PREC = .FALSE.
648               Y_PREC_STATE = Y_PREC_STATE + 1
649               DO I = 1, N
650                  Y_TAIL( I ) = 0.0
651               END DO
652            END IF
653
654            PREVNORMDX = NORMDX
655            PREV_DZ_Z = DZ_Z
656*
657*           Update soluton.
658*
659            IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
660               CALL CAXPY( N, CMPLX(1.0), DY, 1, Y(1,J), 1 )
661            ELSE
662               CALL CLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
663            END IF
664
665         END DO
666*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
667 666     CONTINUE
668*
669*     Set final_* when cnt hits ithresh.
670*
671         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
672         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
673*
674*     Compute error bounds.
675*
676         IF ( N_NORMS .GE. 1 ) THEN
677            ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
678     $           FINAL_DX_X / (1 - DXRATMAX)
679         END IF
680         IF (N_NORMS .GE. 2) THEN
681            ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
682     $           FINAL_DZ_Z / (1 - DZRATMAX)
683         END IF
684*
685*     Compute componentwise relative backward error from formula
686*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
687*     where abs(Z) is the componentwise absolute value of the matrix
688*     or vector Z.
689*
690*         Compute residual RES = B_s - op(A_s) * Y,
691*             op(A) = A, A**T, or A**H depending on TRANS (and type).
692*
693         CALL CCOPY( N, B( 1, J ), 1, RES, 1 )
694         CALL CHEMV( UPLO, N, CMPLX(-1.0), A, LDA, Y(1,J), 1,
695     $        CMPLX(1.0), RES, 1 )
696
697         DO I = 1, N
698            AYB( I ) = CABS1( B( I, J ) )
699         END DO
700*
701*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
702*
703         CALL CLA_HEAMV( UPLO2, N, 1.0,
704     $        A, LDA, Y(1, J), 1, 1.0, AYB, 1 )
705
706         CALL CLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
707*
708*     End of loop for each RHS.
709*
710      END DO
711*
712      RETURN
713*
714*     End of CLA_HERFSX_EXTENDED
715*
716      END
717