1*> \brief \b CTPQRT 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CTPQRT + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpqrt.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpqrt.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpqrt.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, LDT, N, M, L, NB 26* .. 27* .. Array Arguments .. 28* COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> CTPQRT computes a blocked QR factorization of a complex 38*> "triangular-pentagonal" matrix C, which is composed of a 39*> triangular block A and pentagonal block B, using the compact 40*> WY representation for Q. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] M 47*> \verbatim 48*> M is INTEGER 49*> The number of rows of the matrix B. 50*> M >= 0. 51*> \endverbatim 52*> 53*> \param[in] N 54*> \verbatim 55*> N is INTEGER 56*> The number of columns of the matrix B, and the order of the 57*> triangular matrix A. 58*> N >= 0. 59*> \endverbatim 60*> 61*> \param[in] L 62*> \verbatim 63*> L is INTEGER 64*> The number of rows of the upper trapezoidal part of B. 65*> MIN(M,N) >= L >= 0. See Further Details. 66*> \endverbatim 67*> 68*> \param[in] NB 69*> \verbatim 70*> NB is INTEGER 71*> The block size to be used in the blocked QR. N >= NB >= 1. 72*> \endverbatim 73*> 74*> \param[in,out] A 75*> \verbatim 76*> A is COMPLEX array, dimension (LDA,N) 77*> On entry, the upper triangular N-by-N matrix A. 78*> On exit, the elements on and above the diagonal of the array 79*> contain the upper triangular matrix R. 80*> \endverbatim 81*> 82*> \param[in] LDA 83*> \verbatim 84*> LDA is INTEGER 85*> The leading dimension of the array A. LDA >= max(1,N). 86*> \endverbatim 87*> 88*> \param[in,out] B 89*> \verbatim 90*> B is COMPLEX array, dimension (LDB,N) 91*> On entry, the pentagonal M-by-N matrix B. The first M-L rows 92*> are rectangular, and the last L rows are upper trapezoidal. 93*> On exit, B contains the pentagonal matrix V. See Further Details. 94*> \endverbatim 95*> 96*> \param[in] LDB 97*> \verbatim 98*> LDB is INTEGER 99*> The leading dimension of the array B. LDB >= max(1,M). 100*> \endverbatim 101*> 102*> \param[out] T 103*> \verbatim 104*> T is COMPLEX array, dimension (LDT,N) 105*> The upper triangular block reflectors stored in compact form 106*> as a sequence of upper triangular blocks. See Further Details. 107*> \endverbatim 108*> 109*> \param[in] LDT 110*> \verbatim 111*> LDT is INTEGER 112*> The leading dimension of the array T. LDT >= NB. 113*> \endverbatim 114*> 115*> \param[out] WORK 116*> \verbatim 117*> WORK is COMPLEX array, dimension (NB*N) 118*> \endverbatim 119*> 120*> \param[out] INFO 121*> \verbatim 122*> INFO is INTEGER 123*> = 0: successful exit 124*> < 0: if INFO = -i, the i-th argument had an illegal value 125*> \endverbatim 126* 127* Authors: 128* ======== 129* 130*> \author Univ. of Tennessee 131*> \author Univ. of California Berkeley 132*> \author Univ. of Colorado Denver 133*> \author NAG Ltd. 134* 135*> \ingroup complexOTHERcomputational 136* 137*> \par Further Details: 138* ===================== 139*> 140*> \verbatim 141*> 142*> The input matrix C is a (N+M)-by-N matrix 143*> 144*> C = [ A ] 145*> [ B ] 146*> 147*> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal 148*> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N 149*> upper trapezoidal matrix B2: 150*> 151*> B = [ B1 ] <- (M-L)-by-N rectangular 152*> [ B2 ] <- L-by-N upper trapezoidal. 153*> 154*> The upper trapezoidal matrix B2 consists of the first L rows of a 155*> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, 156*> B is rectangular M-by-N; if M=L=N, B is upper triangular. 157*> 158*> The matrix W stores the elementary reflectors H(i) in the i-th column 159*> below the diagonal (of A) in the (N+M)-by-N input matrix C 160*> 161*> C = [ A ] <- upper triangular N-by-N 162*> [ B ] <- M-by-N pentagonal 163*> 164*> so that W can be represented as 165*> 166*> W = [ I ] <- identity, N-by-N 167*> [ V ] <- M-by-N, same form as B. 168*> 169*> Thus, all of information needed for W is contained on exit in B, which 170*> we call V above. Note that V has the same form as B; that is, 171*> 172*> V = [ V1 ] <- (M-L)-by-N rectangular 173*> [ V2 ] <- L-by-N upper trapezoidal. 174*> 175*> The columns of V represent the vectors which define the H(i)'s. 176*> 177*> The number of blocks is B = ceiling(N/NB), where each 178*> block is of order NB except for the last block, which is of order 179*> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block 180*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB 181*> for the last block) T's are stored in the NB-by-N matrix T as 182*> 183*> T = [T1 T2 ... TB]. 184*> \endverbatim 185*> 186* ===================================================================== 187 SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, 188 $ INFO ) 189* 190* -- LAPACK computational routine -- 191* -- LAPACK is a software package provided by Univ. of Tennessee, -- 192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 193* 194* .. Scalar Arguments .. 195 INTEGER INFO, LDA, LDB, LDT, N, M, L, NB 196* .. 197* .. Array Arguments .. 198 COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 199* .. 200* 201* ===================================================================== 202* 203* .. 204* .. Local Scalars .. 205 INTEGER I, IB, LB, MB, IINFO 206* .. 207* .. External Subroutines .. 208 EXTERNAL CTPQRT2, CTPRFB, XERBLA 209* .. 210* .. Executable Statements .. 211* 212* Test the input arguments 213* 214 INFO = 0 215 IF( M.LT.0 ) THEN 216 INFO = -1 217 ELSE IF( N.LT.0 ) THEN 218 INFO = -2 219 ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN 220 INFO = -3 221 ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN 222 INFO = -4 223 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 224 INFO = -6 225 ELSE IF( LDB.LT.MAX( 1, M ) ) THEN 226 INFO = -8 227 ELSE IF( LDT.LT.NB ) THEN 228 INFO = -10 229 END IF 230 IF( INFO.NE.0 ) THEN 231 CALL XERBLA( 'CTPQRT', -INFO ) 232 RETURN 233 END IF 234* 235* Quick return if possible 236* 237 IF( M.EQ.0 .OR. N.EQ.0 ) RETURN 238* 239 DO I = 1, N, NB 240* 241* Compute the QR factorization of the current block 242* 243 IB = MIN( N-I+1, NB ) 244 MB = MIN( M-L+I+IB-1, M ) 245 IF( I.GE.L ) THEN 246 LB = 0 247 ELSE 248 LB = MB-M+L-I+1 249 END IF 250* 251 CALL CTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB, 252 $ T(1, I ), LDT, IINFO ) 253* 254* Update by applying H**H to B(:,I+IB:N) from the left 255* 256 IF( I+IB.LE.N ) THEN 257 CALL CTPRFB( 'L', 'C', 'F', 'C', MB, N-I-IB+1, IB, LB, 258 $ B( 1, I ), LDB, T( 1, I ), LDT, 259 $ A( I, I+IB ), LDA, B( 1, I+IB ), LDB, 260 $ WORK, IB ) 261 END IF 262 END DO 263 RETURN 264* 265* End of CTPQRT 266* 267 END 268