1*> \brief \b DHGEQZ
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DHGEQZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhgeqz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhgeqz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhgeqz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
22*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
23*                          LWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          COMPQ, COMPZ, JOB
27*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ),
31*      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
32*      $                   WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> DHGEQZ computes the eigenvalues of a real matrix pair (H,T),
42*> where H is an upper Hessenberg matrix and T is upper triangular,
43*> using the double-shift QZ method.
44*> Matrix pairs of this type are produced by the reduction to
45*> generalized upper Hessenberg form of a real matrix pair (A,B):
46*>
47*>    A = Q1*H*Z1**T,  B = Q1*T*Z1**T,
48*>
49*> as computed by DGGHRD.
50*>
51*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
52*> also reduced to generalized Schur form,
53*>
54*>    H = Q*S*Z**T,  T = Q*P*Z**T,
55*>
56*> where Q and Z are orthogonal matrices, P is an upper triangular
57*> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
58*> diagonal blocks.
59*>
60*> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
61*> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
62*> eigenvalues.
63*>
64*> Additionally, the 2-by-2 upper triangular diagonal blocks of P
65*> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
66*> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
67*> P(j,j) > 0, and P(j+1,j+1) > 0.
68*>
69*> Optionally, the orthogonal matrix Q from the generalized Schur
70*> factorization may be postmultiplied into an input matrix Q1, and the
71*> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
72*> If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
73*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
74*> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
75*> generalized Schur factorization of (A,B):
76*>
77*>    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T.
78*>
79*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
80*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
81*> complex and beta real.
82*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
83*> generalized nonsymmetric eigenvalue problem (GNEP)
84*>    A*x = lambda*B*x
85*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
86*> alternate form of the GNEP
87*>    mu*A*y = B*y.
88*> Real eigenvalues can be read directly from the generalized Schur
89*> form:
90*>   alpha = S(i,i), beta = P(i,i).
91*>
92*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
93*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
94*>      pp. 241--256.
95*> \endverbatim
96*
97*  Arguments:
98*  ==========
99*
100*> \param[in] JOB
101*> \verbatim
102*>          JOB is CHARACTER*1
103*>          = 'E': Compute eigenvalues only;
104*>          = 'S': Compute eigenvalues and the Schur form.
105*> \endverbatim
106*>
107*> \param[in] COMPQ
108*> \verbatim
109*>          COMPQ is CHARACTER*1
110*>          = 'N': Left Schur vectors (Q) are not computed;
111*>          = 'I': Q is initialized to the unit matrix and the matrix Q
112*>                 of left Schur vectors of (H,T) is returned;
113*>          = 'V': Q must contain an orthogonal matrix Q1 on entry and
114*>                 the product Q1*Q is returned.
115*> \endverbatim
116*>
117*> \param[in] COMPZ
118*> \verbatim
119*>          COMPZ is CHARACTER*1
120*>          = 'N': Right Schur vectors (Z) are not computed;
121*>          = 'I': Z is initialized to the unit matrix and the matrix Z
122*>                 of right Schur vectors of (H,T) is returned;
123*>          = 'V': Z must contain an orthogonal matrix Z1 on entry and
124*>                 the product Z1*Z is returned.
125*> \endverbatim
126*>
127*> \param[in] N
128*> \verbatim
129*>          N is INTEGER
130*>          The order of the matrices H, T, Q, and Z.  N >= 0.
131*> \endverbatim
132*>
133*> \param[in] ILO
134*> \verbatim
135*>          ILO is INTEGER
136*> \endverbatim
137*>
138*> \param[in] IHI
139*> \verbatim
140*>          IHI is INTEGER
141*>          ILO and IHI mark the rows and columns of H which are in
142*>          Hessenberg form.  It is assumed that A is already upper
143*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
144*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
145*> \endverbatim
146*>
147*> \param[in,out] H
148*> \verbatim
149*>          H is DOUBLE PRECISION array, dimension (LDH, N)
150*>          On entry, the N-by-N upper Hessenberg matrix H.
151*>          On exit, if JOB = 'S', H contains the upper quasi-triangular
152*>          matrix S from the generalized Schur factorization.
153*>          If JOB = 'E', the diagonal blocks of H match those of S, but
154*>          the rest of H is unspecified.
155*> \endverbatim
156*>
157*> \param[in] LDH
158*> \verbatim
159*>          LDH is INTEGER
160*>          The leading dimension of the array H.  LDH >= max( 1, N ).
161*> \endverbatim
162*>
163*> \param[in,out] T
164*> \verbatim
165*>          T is DOUBLE PRECISION array, dimension (LDT, N)
166*>          On entry, the N-by-N upper triangular matrix T.
167*>          On exit, if JOB = 'S', T contains the upper triangular
168*>          matrix P from the generalized Schur factorization;
169*>          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
170*>          are reduced to positive diagonal form, i.e., if H(j+1,j) is
171*>          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
172*>          T(j+1,j+1) > 0.
173*>          If JOB = 'E', the diagonal blocks of T match those of P, but
174*>          the rest of T is unspecified.
175*> \endverbatim
176*>
177*> \param[in] LDT
178*> \verbatim
179*>          LDT is INTEGER
180*>          The leading dimension of the array T.  LDT >= max( 1, N ).
181*> \endverbatim
182*>
183*> \param[out] ALPHAR
184*> \verbatim
185*>          ALPHAR is DOUBLE PRECISION array, dimension (N)
186*>          The real parts of each scalar alpha defining an eigenvalue
187*>          of GNEP.
188*> \endverbatim
189*>
190*> \param[out] ALPHAI
191*> \verbatim
192*>          ALPHAI is DOUBLE PRECISION array, dimension (N)
193*>          The imaginary parts of each scalar alpha defining an
194*>          eigenvalue of GNEP.
195*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
196*>          positive, then the j-th and (j+1)-st eigenvalues are a
197*>          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
198*> \endverbatim
199*>
200*> \param[out] BETA
201*> \verbatim
202*>          BETA is DOUBLE PRECISION array, dimension (N)
203*>          The scalars beta that define the eigenvalues of GNEP.
204*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
205*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
206*>          pair (A,B), in one of the forms lambda = alpha/beta or
207*>          mu = beta/alpha.  Since either lambda or mu may overflow,
208*>          they should not, in general, be computed.
209*> \endverbatim
210*>
211*> \param[in,out] Q
212*> \verbatim
213*>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
214*>          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in
215*>          the reduction of (A,B) to generalized Hessenberg form.
216*>          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur
217*>          vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix
218*>          of left Schur vectors of (A,B).
219*>          Not referenced if COMPQ = 'N'.
220*> \endverbatim
221*>
222*> \param[in] LDQ
223*> \verbatim
224*>          LDQ is INTEGER
225*>          The leading dimension of the array Q.  LDQ >= 1.
226*>          If COMPQ='V' or 'I', then LDQ >= N.
227*> \endverbatim
228*>
229*> \param[in,out] Z
230*> \verbatim
231*>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
232*>          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
233*>          the reduction of (A,B) to generalized Hessenberg form.
234*>          On exit, if COMPZ = 'I', the orthogonal matrix of
235*>          right Schur vectors of (H,T), and if COMPZ = 'V', the
236*>          orthogonal matrix of right Schur vectors of (A,B).
237*>          Not referenced if COMPZ = 'N'.
238*> \endverbatim
239*>
240*> \param[in] LDZ
241*> \verbatim
242*>          LDZ is INTEGER
243*>          The leading dimension of the array Z.  LDZ >= 1.
244*>          If COMPZ='V' or 'I', then LDZ >= N.
245*> \endverbatim
246*>
247*> \param[out] WORK
248*> \verbatim
249*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
250*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
251*> \endverbatim
252*>
253*> \param[in] LWORK
254*> \verbatim
255*>          LWORK is INTEGER
256*>          The dimension of the array WORK.  LWORK >= max(1,N).
257*>
258*>          If LWORK = -1, then a workspace query is assumed; the routine
259*>          only calculates the optimal size of the WORK array, returns
260*>          this value as the first entry of the WORK array, and no error
261*>          message related to LWORK is issued by XERBLA.
262*> \endverbatim
263*>
264*> \param[out] INFO
265*> \verbatim
266*>          INFO is INTEGER
267*>          = 0: successful exit
268*>          < 0: if INFO = -i, the i-th argument had an illegal value
269*>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
270*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
271*>                     BETA(i), i=INFO+1,...,N should be correct.
272*>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
273*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
274*>                     BETA(i), i=INFO-N+1,...,N should be correct.
275*> \endverbatim
276*
277*  Authors:
278*  ========
279*
280*> \author Univ. of Tennessee
281*> \author Univ. of California Berkeley
282*> \author Univ. of Colorado Denver
283*> \author NAG Ltd.
284*
285*> \ingroup doubleGEcomputational
286*
287*> \par Further Details:
288*  =====================
289*>
290*> \verbatim
291*>
292*>  Iteration counters:
293*>
294*>  JITER  -- counts iterations.
295*>  IITER  -- counts iterations run since ILAST was last
296*>            changed.  This is therefore reset only when a 1-by-1 or
297*>            2-by-2 block deflates off the bottom.
298*> \endverbatim
299*>
300*  =====================================================================
301      SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
302     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
303     $                   LWORK, INFO )
304*
305*  -- LAPACK computational routine --
306*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
307*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
308*
309*     .. Scalar Arguments ..
310      CHARACTER          COMPQ, COMPZ, JOB
311      INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
312*     ..
313*     .. Array Arguments ..
314      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ),
315     $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
316     $                   WORK( * ), Z( LDZ, * )
317*     ..
318*
319*  =====================================================================
320*
321*     .. Parameters ..
322*    $                     SAFETY = 1.0E+0 )
323      DOUBLE PRECISION   HALF, ZERO, ONE, SAFETY
324      PARAMETER          ( HALF = 0.5D+0, ZERO = 0.0D+0, ONE = 1.0D+0,
325     $                   SAFETY = 1.0D+2 )
326*     ..
327*     .. Local Scalars ..
328      LOGICAL            ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
329     $                   LQUERY
330      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
331     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
332     $                   JR, MAXIT
333      DOUBLE PRECISION   A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
334     $                   AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
335     $                   AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
336     $                   B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
337     $                   BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
338     $                   CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
339     $                   SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
340     $                   TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
341     $                   U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
342     $                   WR2
343*     ..
344*     .. Local Arrays ..
345      DOUBLE PRECISION   V( 3 )
346*     ..
347*     .. External Functions ..
348      LOGICAL            LSAME
349      DOUBLE PRECISION   DLAMCH, DLANHS, DLAPY2, DLAPY3
350      EXTERNAL           LSAME, DLAMCH, DLANHS, DLAPY2, DLAPY3
351*     ..
352*     .. External Subroutines ..
353      EXTERNAL           DLAG2, DLARFG, DLARTG, DLASET, DLASV2, DROT,
354     $                   XERBLA
355*     ..
356*     .. Intrinsic Functions ..
357      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
358*     ..
359*     .. Executable Statements ..
360*
361*     Decode JOB, COMPQ, COMPZ
362*
363      IF( LSAME( JOB, 'E' ) ) THEN
364         ILSCHR = .FALSE.
365         ISCHUR = 1
366      ELSE IF( LSAME( JOB, 'S' ) ) THEN
367         ILSCHR = .TRUE.
368         ISCHUR = 2
369      ELSE
370         ISCHUR = 0
371      END IF
372*
373      IF( LSAME( COMPQ, 'N' ) ) THEN
374         ILQ = .FALSE.
375         ICOMPQ = 1
376      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
377         ILQ = .TRUE.
378         ICOMPQ = 2
379      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
380         ILQ = .TRUE.
381         ICOMPQ = 3
382      ELSE
383         ICOMPQ = 0
384      END IF
385*
386      IF( LSAME( COMPZ, 'N' ) ) THEN
387         ILZ = .FALSE.
388         ICOMPZ = 1
389      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
390         ILZ = .TRUE.
391         ICOMPZ = 2
392      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
393         ILZ = .TRUE.
394         ICOMPZ = 3
395      ELSE
396         ICOMPZ = 0
397      END IF
398*
399*     Check Argument Values
400*
401      INFO = 0
402      WORK( 1 ) = MAX( 1, N )
403      LQUERY = ( LWORK.EQ.-1 )
404      IF( ISCHUR.EQ.0 ) THEN
405         INFO = -1
406      ELSE IF( ICOMPQ.EQ.0 ) THEN
407         INFO = -2
408      ELSE IF( ICOMPZ.EQ.0 ) THEN
409         INFO = -3
410      ELSE IF( N.LT.0 ) THEN
411         INFO = -4
412      ELSE IF( ILO.LT.1 ) THEN
413         INFO = -5
414      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
415         INFO = -6
416      ELSE IF( LDH.LT.N ) THEN
417         INFO = -8
418      ELSE IF( LDT.LT.N ) THEN
419         INFO = -10
420      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
421         INFO = -15
422      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
423         INFO = -17
424      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
425         INFO = -19
426      END IF
427      IF( INFO.NE.0 ) THEN
428         CALL XERBLA( 'DHGEQZ', -INFO )
429         RETURN
430      ELSE IF( LQUERY ) THEN
431         RETURN
432      END IF
433*
434*     Quick return if possible
435*
436      IF( N.LE.0 ) THEN
437         WORK( 1 ) = DBLE( 1 )
438         RETURN
439      END IF
440*
441*     Initialize Q and Z
442*
443      IF( ICOMPQ.EQ.3 )
444     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
445      IF( ICOMPZ.EQ.3 )
446     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
447*
448*     Machine Constants
449*
450      IN = IHI + 1 - ILO
451      SAFMIN = DLAMCH( 'S' )
452      SAFMAX = ONE / SAFMIN
453      ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
454      ANORM = DLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
455      BNORM = DLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
456      ATOL = MAX( SAFMIN, ULP*ANORM )
457      BTOL = MAX( SAFMIN, ULP*BNORM )
458      ASCALE = ONE / MAX( SAFMIN, ANORM )
459      BSCALE = ONE / MAX( SAFMIN, BNORM )
460*
461*     Set Eigenvalues IHI+1:N
462*
463      DO 30 J = IHI + 1, N
464         IF( T( J, J ).LT.ZERO ) THEN
465            IF( ILSCHR ) THEN
466               DO 10 JR = 1, J
467                  H( JR, J ) = -H( JR, J )
468                  T( JR, J ) = -T( JR, J )
469   10          CONTINUE
470            ELSE
471               H( J, J ) = -H( J, J )
472               T( J, J ) = -T( J, J )
473            END IF
474            IF( ILZ ) THEN
475               DO 20 JR = 1, N
476                  Z( JR, J ) = -Z( JR, J )
477   20          CONTINUE
478            END IF
479         END IF
480         ALPHAR( J ) = H( J, J )
481         ALPHAI( J ) = ZERO
482         BETA( J ) = T( J, J )
483   30 CONTINUE
484*
485*     If IHI < ILO, skip QZ steps
486*
487      IF( IHI.LT.ILO )
488     $   GO TO 380
489*
490*     MAIN QZ ITERATION LOOP
491*
492*     Initialize dynamic indices
493*
494*     Eigenvalues ILAST+1:N have been found.
495*        Column operations modify rows IFRSTM:whatever.
496*        Row operations modify columns whatever:ILASTM.
497*
498*     If only eigenvalues are being computed, then
499*        IFRSTM is the row of the last splitting row above row ILAST;
500*        this is always at least ILO.
501*     IITER counts iterations since the last eigenvalue was found,
502*        to tell when to use an extraordinary shift.
503*     MAXIT is the maximum number of QZ sweeps allowed.
504*
505      ILAST = IHI
506      IF( ILSCHR ) THEN
507         IFRSTM = 1
508         ILASTM = N
509      ELSE
510         IFRSTM = ILO
511         ILASTM = IHI
512      END IF
513      IITER = 0
514      ESHIFT = ZERO
515      MAXIT = 30*( IHI-ILO+1 )
516*
517      DO 360 JITER = 1, MAXIT
518*
519*        Split the matrix if possible.
520*
521*        Two tests:
522*           1: H(j,j-1)=0  or  j=ILO
523*           2: T(j,j)=0
524*
525         IF( ILAST.EQ.ILO ) THEN
526*
527*           Special case: j=ILAST
528*
529            GO TO 80
530         ELSE
531            IF( ABS( H( ILAST, ILAST-1 ) ).LE.MAX( SAFMIN, ULP*(
532     $         ABS( H( ILAST, ILAST ) ) + ABS( H( ILAST-1, ILAST-1 ) )
533     $         ) ) ) THEN
534               H( ILAST, ILAST-1 ) = ZERO
535               GO TO 80
536            END IF
537         END IF
538*
539         IF( ABS( T( ILAST, ILAST ) ).LE.MAX( SAFMIN, ULP*(
540     $         ABS( T( ILAST - 1, ILAST ) ) + ABS( T( ILAST-1, ILAST-1 )
541     $          ) ) ) ) THEN
542            T( ILAST, ILAST ) = ZERO
543            GO TO 70
544         END IF
545*
546*        General case: j<ILAST
547*
548         DO 60 J = ILAST - 1, ILO, -1
549*
550*           Test 1: for H(j,j-1)=0 or j=ILO
551*
552            IF( J.EQ.ILO ) THEN
553               ILAZRO = .TRUE.
554            ELSE
555               IF( ABS( H( J, J-1 ) ).LE.MAX( SAFMIN, ULP*(
556     $         ABS( H( J, J ) ) + ABS( H( J-1, J-1 ) )
557     $         ) ) ) THEN
558                  H( J, J-1 ) = ZERO
559                  ILAZRO = .TRUE.
560               ELSE
561                  ILAZRO = .FALSE.
562               END IF
563            END IF
564*
565*           Test 2: for T(j,j)=0
566*
567            TEMP = ABS ( T( J, J + 1 ) )
568            IF ( J .GT. ILO )
569     $           TEMP = TEMP + ABS ( T( J - 1, J ) )
570            IF( ABS( T( J, J ) ).LT.MAX( SAFMIN,ULP*TEMP ) ) THEN
571               T( J, J ) = ZERO
572*
573*              Test 1a: Check for 2 consecutive small subdiagonals in A
574*
575               ILAZR2 = .FALSE.
576               IF( .NOT.ILAZRO ) THEN
577                  TEMP = ABS( H( J, J-1 ) )
578                  TEMP2 = ABS( H( J, J ) )
579                  TEMPR = MAX( TEMP, TEMP2 )
580                  IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
581                     TEMP = TEMP / TEMPR
582                     TEMP2 = TEMP2 / TEMPR
583                  END IF
584                  IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
585     $                ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
586               END IF
587*
588*              If both tests pass (1 & 2), i.e., the leading diagonal
589*              element of B in the block is zero, split a 1x1 block off
590*              at the top. (I.e., at the J-th row/column) The leading
591*              diagonal element of the remainder can also be zero, so
592*              this may have to be done repeatedly.
593*
594               IF( ILAZRO .OR. ILAZR2 ) THEN
595                  DO 40 JCH = J, ILAST - 1
596                     TEMP = H( JCH, JCH )
597                     CALL DLARTG( TEMP, H( JCH+1, JCH ), C, S,
598     $                            H( JCH, JCH ) )
599                     H( JCH+1, JCH ) = ZERO
600                     CALL DROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
601     $                          H( JCH+1, JCH+1 ), LDH, C, S )
602                     CALL DROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
603     $                          T( JCH+1, JCH+1 ), LDT, C, S )
604                     IF( ILQ )
605     $                  CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
606     $                             C, S )
607                     IF( ILAZR2 )
608     $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
609                     ILAZR2 = .FALSE.
610                     IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
611                        IF( JCH+1.GE.ILAST ) THEN
612                           GO TO 80
613                        ELSE
614                           IFIRST = JCH + 1
615                           GO TO 110
616                        END IF
617                     END IF
618                     T( JCH+1, JCH+1 ) = ZERO
619   40             CONTINUE
620                  GO TO 70
621               ELSE
622*
623*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
624*                 Then process as in the case T(ILAST,ILAST)=0
625*
626                  DO 50 JCH = J, ILAST - 1
627                     TEMP = T( JCH, JCH+1 )
628                     CALL DLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
629     $                            T( JCH, JCH+1 ) )
630                     T( JCH+1, JCH+1 ) = ZERO
631                     IF( JCH.LT.ILASTM-1 )
632     $                  CALL DROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
633     $                             T( JCH+1, JCH+2 ), LDT, C, S )
634                     CALL DROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
635     $                          H( JCH+1, JCH-1 ), LDH, C, S )
636                     IF( ILQ )
637     $                  CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
638     $                             C, S )
639                     TEMP = H( JCH+1, JCH )
640                     CALL DLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
641     $                            H( JCH+1, JCH ) )
642                     H( JCH+1, JCH-1 ) = ZERO
643                     CALL DROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
644     $                          H( IFRSTM, JCH-1 ), 1, C, S )
645                     CALL DROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
646     $                          T( IFRSTM, JCH-1 ), 1, C, S )
647                     IF( ILZ )
648     $                  CALL DROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
649     $                             C, S )
650   50             CONTINUE
651                  GO TO 70
652               END IF
653            ELSE IF( ILAZRO ) THEN
654*
655*              Only test 1 passed -- work on J:ILAST
656*
657               IFIRST = J
658               GO TO 110
659            END IF
660*
661*           Neither test passed -- try next J
662*
663   60    CONTINUE
664*
665*        (Drop-through is "impossible")
666*
667         INFO = N + 1
668         GO TO 420
669*
670*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
671*        1x1 block.
672*
673   70    CONTINUE
674         TEMP = H( ILAST, ILAST )
675         CALL DLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
676     $                H( ILAST, ILAST ) )
677         H( ILAST, ILAST-1 ) = ZERO
678         CALL DROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
679     $              H( IFRSTM, ILAST-1 ), 1, C, S )
680         CALL DROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
681     $              T( IFRSTM, ILAST-1 ), 1, C, S )
682         IF( ILZ )
683     $      CALL DROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
684*
685*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
686*                              and BETA
687*
688   80    CONTINUE
689         IF( T( ILAST, ILAST ).LT.ZERO ) THEN
690            IF( ILSCHR ) THEN
691               DO 90 J = IFRSTM, ILAST
692                  H( J, ILAST ) = -H( J, ILAST )
693                  T( J, ILAST ) = -T( J, ILAST )
694   90          CONTINUE
695            ELSE
696               H( ILAST, ILAST ) = -H( ILAST, ILAST )
697               T( ILAST, ILAST ) = -T( ILAST, ILAST )
698            END IF
699            IF( ILZ ) THEN
700               DO 100 J = 1, N
701                  Z( J, ILAST ) = -Z( J, ILAST )
702  100          CONTINUE
703            END IF
704         END IF
705         ALPHAR( ILAST ) = H( ILAST, ILAST )
706         ALPHAI( ILAST ) = ZERO
707         BETA( ILAST ) = T( ILAST, ILAST )
708*
709*        Go to next block -- exit if finished.
710*
711         ILAST = ILAST - 1
712         IF( ILAST.LT.ILO )
713     $      GO TO 380
714*
715*        Reset counters
716*
717         IITER = 0
718         ESHIFT = ZERO
719         IF( .NOT.ILSCHR ) THEN
720            ILASTM = ILAST
721            IF( IFRSTM.GT.ILAST )
722     $         IFRSTM = ILO
723         END IF
724         GO TO 350
725*
726*        QZ step
727*
728*        This iteration only involves rows/columns IFIRST:ILAST. We
729*        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
730*
731  110    CONTINUE
732         IITER = IITER + 1
733         IF( .NOT.ILSCHR ) THEN
734            IFRSTM = IFIRST
735         END IF
736*
737*        Compute single shifts.
738*
739*        At this point, IFIRST < ILAST, and the diagonal elements of
740*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
741*        magnitude)
742*
743         IF( ( IITER / 10 )*10.EQ.IITER ) THEN
744*
745*           Exceptional shift.  Chosen for no particularly good reason.
746*           (Single shift only.)
747*
748            IF( ( DBLE( MAXIT )*SAFMIN )*ABS( H( ILAST, ILAST-1 ) ).LT.
749     $          ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
750               ESHIFT = H( ILAST, ILAST-1 ) /
751     $                  T( ILAST-1, ILAST-1 )
752            ELSE
753               ESHIFT = ESHIFT + ONE / ( SAFMIN*DBLE( MAXIT ) )
754            END IF
755            S1 = ONE
756            WR = ESHIFT
757*
758         ELSE
759*
760*           Shifts based on the generalized eigenvalues of the
761*           bottom-right 2x2 block of A and B. The first eigenvalue
762*           returned by DLAG2 is the Wilkinson shift (AEP p.512),
763*
764            CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
765     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
766     $                  S2, WR, WR2, WI )
767*
768            IF ( ABS( (WR/S1)*T( ILAST, ILAST ) - H( ILAST, ILAST ) )
769     $         .GT. ABS( (WR2/S2)*T( ILAST, ILAST )
770     $         - H( ILAST, ILAST ) ) ) THEN
771               TEMP = WR
772               WR = WR2
773               WR2 = TEMP
774               TEMP = S1
775               S1 = S2
776               S2 = TEMP
777            END IF
778            TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
779            IF( WI.NE.ZERO )
780     $         GO TO 200
781         END IF
782*
783*        Fiddle with shift to avoid overflow
784*
785         TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
786         IF( S1.GT.TEMP ) THEN
787            SCALE = TEMP / S1
788         ELSE
789            SCALE = ONE
790         END IF
791*
792         TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
793         IF( ABS( WR ).GT.TEMP )
794     $      SCALE = MIN( SCALE, TEMP / ABS( WR ) )
795         S1 = SCALE*S1
796         WR = SCALE*WR
797*
798*        Now check for two consecutive small subdiagonals.
799*
800         DO 120 J = ILAST - 1, IFIRST + 1, -1
801            ISTART = J
802            TEMP = ABS( S1*H( J, J-1 ) )
803            TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
804            TEMPR = MAX( TEMP, TEMP2 )
805            IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
806               TEMP = TEMP / TEMPR
807               TEMP2 = TEMP2 / TEMPR
808            END IF
809            IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
810     $          TEMP2 )GO TO 130
811  120    CONTINUE
812*
813         ISTART = IFIRST
814  130    CONTINUE
815*
816*        Do an implicit single-shift QZ sweep.
817*
818*        Initial Q
819*
820         TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
821         TEMP2 = S1*H( ISTART+1, ISTART )
822         CALL DLARTG( TEMP, TEMP2, C, S, TEMPR )
823*
824*        Sweep
825*
826         DO 190 J = ISTART, ILAST - 1
827            IF( J.GT.ISTART ) THEN
828               TEMP = H( J, J-1 )
829               CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
830               H( J+1, J-1 ) = ZERO
831            END IF
832*
833            DO 140 JC = J, ILASTM
834               TEMP = C*H( J, JC ) + S*H( J+1, JC )
835               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
836               H( J, JC ) = TEMP
837               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
838               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
839               T( J, JC ) = TEMP2
840  140       CONTINUE
841            IF( ILQ ) THEN
842               DO 150 JR = 1, N
843                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
844                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
845                  Q( JR, J ) = TEMP
846  150          CONTINUE
847            END IF
848*
849            TEMP = T( J+1, J+1 )
850            CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
851            T( J+1, J ) = ZERO
852*
853            DO 160 JR = IFRSTM, MIN( J+2, ILAST )
854               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
855               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
856               H( JR, J+1 ) = TEMP
857  160       CONTINUE
858            DO 170 JR = IFRSTM, J
859               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
860               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
861               T( JR, J+1 ) = TEMP
862  170       CONTINUE
863            IF( ILZ ) THEN
864               DO 180 JR = 1, N
865                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
866                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
867                  Z( JR, J+1 ) = TEMP
868  180          CONTINUE
869            END IF
870  190    CONTINUE
871*
872         GO TO 350
873*
874*        Use Francis double-shift
875*
876*        Note: the Francis double-shift should work with real shifts,
877*              but only if the block is at least 3x3.
878*              This code may break if this point is reached with
879*              a 2x2 block with real eigenvalues.
880*
881  200    CONTINUE
882         IF( IFIRST+1.EQ.ILAST ) THEN
883*
884*           Special case -- 2x2 block with complex eigenvectors
885*
886*           Step 1: Standardize, that is, rotate so that
887*
888*                       ( B11  0  )
889*                   B = (         )  with B11 non-negative.
890*                       (  0  B22 )
891*
892            CALL DLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
893     $                   T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
894*
895            IF( B11.LT.ZERO ) THEN
896               CR = -CR
897               SR = -SR
898               B11 = -B11
899               B22 = -B22
900            END IF
901*
902            CALL DROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
903     $                 H( ILAST, ILAST-1 ), LDH, CL, SL )
904            CALL DROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
905     $                 H( IFRSTM, ILAST ), 1, CR, SR )
906*
907            IF( ILAST.LT.ILASTM )
908     $         CALL DROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
909     $                    T( ILAST, ILAST+1 ), LDT, CL, SL )
910            IF( IFRSTM.LT.ILAST-1 )
911     $         CALL DROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
912     $                    T( IFRSTM, ILAST ), 1, CR, SR )
913*
914            IF( ILQ )
915     $         CALL DROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
916     $                    SL )
917            IF( ILZ )
918     $         CALL DROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
919     $                    SR )
920*
921            T( ILAST-1, ILAST-1 ) = B11
922            T( ILAST-1, ILAST ) = ZERO
923            T( ILAST, ILAST-1 ) = ZERO
924            T( ILAST, ILAST ) = B22
925*
926*           If B22 is negative, negate column ILAST
927*
928            IF( B22.LT.ZERO ) THEN
929               DO 210 J = IFRSTM, ILAST
930                  H( J, ILAST ) = -H( J, ILAST )
931                  T( J, ILAST ) = -T( J, ILAST )
932  210          CONTINUE
933*
934               IF( ILZ ) THEN
935                  DO 220 J = 1, N
936                     Z( J, ILAST ) = -Z( J, ILAST )
937  220             CONTINUE
938               END IF
939               B22 = -B22
940            END IF
941*
942*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
943*
944*           Recompute shift
945*
946            CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
947     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
948     $                  TEMP, WR, TEMP2, WI )
949*
950*           If standardization has perturbed the shift onto real line,
951*           do another (real single-shift) QR step.
952*
953            IF( WI.EQ.ZERO )
954     $         GO TO 350
955            S1INV = ONE / S1
956*
957*           Do EISPACK (QZVAL) computation of alpha and beta
958*
959            A11 = H( ILAST-1, ILAST-1 )
960            A21 = H( ILAST, ILAST-1 )
961            A12 = H( ILAST-1, ILAST )
962            A22 = H( ILAST, ILAST )
963*
964*           Compute complex Givens rotation on right
965*           (Assume some element of C = (sA - wB) > unfl )
966*                            __
967*           (sA - wB) ( CZ   -SZ )
968*                     ( SZ    CZ )
969*
970            C11R = S1*A11 - WR*B11
971            C11I = -WI*B11
972            C12 = S1*A12
973            C21 = S1*A21
974            C22R = S1*A22 - WR*B22
975            C22I = -WI*B22
976*
977            IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+
978     $          ABS( C22R )+ABS( C22I ) ) THEN
979               T1 = DLAPY3( C12, C11R, C11I )
980               CZ = C12 / T1
981               SZR = -C11R / T1
982               SZI = -C11I / T1
983            ELSE
984               CZ = DLAPY2( C22R, C22I )
985               IF( CZ.LE.SAFMIN ) THEN
986                  CZ = ZERO
987                  SZR = ONE
988                  SZI = ZERO
989               ELSE
990                  TEMPR = C22R / CZ
991                  TEMPI = C22I / CZ
992                  T1 = DLAPY2( CZ, C21 )
993                  CZ = CZ / T1
994                  SZR = -C21*TEMPR / T1
995                  SZI = C21*TEMPI / T1
996               END IF
997            END IF
998*
999*           Compute Givens rotation on left
1000*
1001*           (  CQ   SQ )
1002*           (  __      )  A or B
1003*           ( -SQ   CQ )
1004*
1005            AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 )
1006            BN = ABS( B11 ) + ABS( B22 )
1007            WABS = ABS( WR ) + ABS( WI )
1008            IF( S1*AN.GT.WABS*BN ) THEN
1009               CQ = CZ*B11
1010               SQR = SZR*B22
1011               SQI = -SZI*B22
1012            ELSE
1013               A1R = CZ*A11 + SZR*A12
1014               A1I = SZI*A12
1015               A2R = CZ*A21 + SZR*A22
1016               A2I = SZI*A22
1017               CQ = DLAPY2( A1R, A1I )
1018               IF( CQ.LE.SAFMIN ) THEN
1019                  CQ = ZERO
1020                  SQR = ONE
1021                  SQI = ZERO
1022               ELSE
1023                  TEMPR = A1R / CQ
1024                  TEMPI = A1I / CQ
1025                  SQR = TEMPR*A2R + TEMPI*A2I
1026                  SQI = TEMPI*A2R - TEMPR*A2I
1027               END IF
1028            END IF
1029            T1 = DLAPY3( CQ, SQR, SQI )
1030            CQ = CQ / T1
1031            SQR = SQR / T1
1032            SQI = SQI / T1
1033*
1034*           Compute diagonal elements of QBZ
1035*
1036            TEMPR = SQR*SZR - SQI*SZI
1037            TEMPI = SQR*SZI + SQI*SZR
1038            B1R = CQ*CZ*B11 + TEMPR*B22
1039            B1I = TEMPI*B22
1040            B1A = DLAPY2( B1R, B1I )
1041            B2R = CQ*CZ*B22 + TEMPR*B11
1042            B2I = -TEMPI*B11
1043            B2A = DLAPY2( B2R, B2I )
1044*
1045*           Normalize so beta > 0, and Im( alpha1 ) > 0
1046*
1047            BETA( ILAST-1 ) = B1A
1048            BETA( ILAST ) = B2A
1049            ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV
1050            ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV
1051            ALPHAR( ILAST ) = ( WR*B2A )*S1INV
1052            ALPHAI( ILAST ) = -( WI*B2A )*S1INV
1053*
1054*           Step 3: Go to next block -- exit if finished.
1055*
1056            ILAST = IFIRST - 1
1057            IF( ILAST.LT.ILO )
1058     $         GO TO 380
1059*
1060*           Reset counters
1061*
1062            IITER = 0
1063            ESHIFT = ZERO
1064            IF( .NOT.ILSCHR ) THEN
1065               ILASTM = ILAST
1066               IF( IFRSTM.GT.ILAST )
1067     $            IFRSTM = ILO
1068            END IF
1069            GO TO 350
1070         ELSE
1071*
1072*           Usual case: 3x3 or larger block, using Francis implicit
1073*                       double-shift
1074*
1075*                                    2
1076*           Eigenvalue equation is  w  - c w + d = 0,
1077*
1078*                                         -1 2        -1
1079*           so compute 1st column of  (A B  )  - c A B   + d
1080*           using the formula in QZIT (from EISPACK)
1081*
1082*           We assume that the block is at least 3x3
1083*
1084            AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
1085     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
1086            AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
1087     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
1088            AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
1089     $             ( BSCALE*T( ILAST, ILAST ) )
1090            AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
1091     $             ( BSCALE*T( ILAST, ILAST ) )
1092            U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST )
1093            AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) /
1094     $              ( BSCALE*T( IFIRST, IFIRST ) )
1095            AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) /
1096     $              ( BSCALE*T( IFIRST, IFIRST ) )
1097            AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) /
1098     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1099            AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) /
1100     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1101            AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) /
1102     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1103            U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 )
1104*
1105            V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 +
1106     $               AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L
1107            V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )-
1108     $               ( AD22-AD11L )+AD21*U12 )*AD21L
1109            V( 3 ) = AD32L*AD21L
1110*
1111            ISTART = IFIRST
1112*
1113            CALL DLARFG( 3, V( 1 ), V( 2 ), 1, TAU )
1114            V( 1 ) = ONE
1115*
1116*           Sweep
1117*
1118            DO 290 J = ISTART, ILAST - 2
1119*
1120*              All but last elements: use 3x3 Householder transforms.
1121*
1122*              Zero (j-1)st column of A
1123*
1124               IF( J.GT.ISTART ) THEN
1125                  V( 1 ) = H( J, J-1 )
1126                  V( 2 ) = H( J+1, J-1 )
1127                  V( 3 ) = H( J+2, J-1 )
1128*
1129                  CALL DLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU )
1130                  V( 1 ) = ONE
1131                  H( J+1, J-1 ) = ZERO
1132                  H( J+2, J-1 ) = ZERO
1133               END IF
1134*
1135               DO 230 JC = J, ILASTM
1136                  TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
1137     $                   H( J+2, JC ) )
1138                  H( J, JC ) = H( J, JC ) - TEMP
1139                  H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
1140                  H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
1141                  TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
1142     $                    T( J+2, JC ) )
1143                  T( J, JC ) = T( J, JC ) - TEMP2
1144                  T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
1145                  T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
1146  230          CONTINUE
1147               IF( ILQ ) THEN
1148                  DO 240 JR = 1, N
1149                     TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
1150     $                      Q( JR, J+2 ) )
1151                     Q( JR, J ) = Q( JR, J ) - TEMP
1152                     Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
1153                     Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
1154  240             CONTINUE
1155               END IF
1156*
1157*              Zero j-th column of B (see DLAGBC for details)
1158*
1159*              Swap rows to pivot
1160*
1161               ILPIVT = .FALSE.
1162               TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) )
1163               TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) )
1164               IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN
1165                  SCALE = ZERO
1166                  U1 = ONE
1167                  U2 = ZERO
1168                  GO TO 250
1169               ELSE IF( TEMP.GE.TEMP2 ) THEN
1170                  W11 = T( J+1, J+1 )
1171                  W21 = T( J+2, J+1 )
1172                  W12 = T( J+1, J+2 )
1173                  W22 = T( J+2, J+2 )
1174                  U1 = T( J+1, J )
1175                  U2 = T( J+2, J )
1176               ELSE
1177                  W21 = T( J+1, J+1 )
1178                  W11 = T( J+2, J+1 )
1179                  W22 = T( J+1, J+2 )
1180                  W12 = T( J+2, J+2 )
1181                  U2 = T( J+1, J )
1182                  U1 = T( J+2, J )
1183               END IF
1184*
1185*              Swap columns if nec.
1186*
1187               IF( ABS( W12 ).GT.ABS( W11 ) ) THEN
1188                  ILPIVT = .TRUE.
1189                  TEMP = W12
1190                  TEMP2 = W22
1191                  W12 = W11
1192                  W22 = W21
1193                  W11 = TEMP
1194                  W21 = TEMP2
1195               END IF
1196*
1197*              LU-factor
1198*
1199               TEMP = W21 / W11
1200               U2 = U2 - TEMP*U1
1201               W22 = W22 - TEMP*W12
1202               W21 = ZERO
1203*
1204*              Compute SCALE
1205*
1206               SCALE = ONE
1207               IF( ABS( W22 ).LT.SAFMIN ) THEN
1208                  SCALE = ZERO
1209                  U2 = ONE
1210                  U1 = -W12 / W11
1211                  GO TO 250
1212               END IF
1213               IF( ABS( W22 ).LT.ABS( U2 ) )
1214     $            SCALE = ABS( W22 / U2 )
1215               IF( ABS( W11 ).LT.ABS( U1 ) )
1216     $            SCALE = MIN( SCALE, ABS( W11 / U1 ) )
1217*
1218*              Solve
1219*
1220               U2 = ( SCALE*U2 ) / W22
1221               U1 = ( SCALE*U1-W12*U2 ) / W11
1222*
1223  250          CONTINUE
1224               IF( ILPIVT ) THEN
1225                  TEMP = U2
1226                  U2 = U1
1227                  U1 = TEMP
1228               END IF
1229*
1230*              Compute Householder Vector
1231*
1232               T1 = SQRT( SCALE**2+U1**2+U2**2 )
1233               TAU = ONE + SCALE / T1
1234               VS = -ONE / ( SCALE+T1 )
1235               V( 1 ) = ONE
1236               V( 2 ) = VS*U1
1237               V( 3 ) = VS*U2
1238*
1239*              Apply transformations from the right.
1240*
1241               DO 260 JR = IFRSTM, MIN( J+3, ILAST )
1242                  TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
1243     $                   H( JR, J+2 ) )
1244                  H( JR, J ) = H( JR, J ) - TEMP
1245                  H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
1246                  H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
1247  260          CONTINUE
1248               DO 270 JR = IFRSTM, J + 2
1249                  TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
1250     $                   T( JR, J+2 ) )
1251                  T( JR, J ) = T( JR, J ) - TEMP
1252                  T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
1253                  T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
1254  270          CONTINUE
1255               IF( ILZ ) THEN
1256                  DO 280 JR = 1, N
1257                     TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
1258     $                      Z( JR, J+2 ) )
1259                     Z( JR, J ) = Z( JR, J ) - TEMP
1260                     Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
1261                     Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
1262  280             CONTINUE
1263               END IF
1264               T( J+1, J ) = ZERO
1265               T( J+2, J ) = ZERO
1266  290       CONTINUE
1267*
1268*           Last elements: Use Givens rotations
1269*
1270*           Rotations from the left
1271*
1272            J = ILAST - 1
1273            TEMP = H( J, J-1 )
1274            CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
1275            H( J+1, J-1 ) = ZERO
1276*
1277            DO 300 JC = J, ILASTM
1278               TEMP = C*H( J, JC ) + S*H( J+1, JC )
1279               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
1280               H( J, JC ) = TEMP
1281               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
1282               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
1283               T( J, JC ) = TEMP2
1284  300       CONTINUE
1285            IF( ILQ ) THEN
1286               DO 310 JR = 1, N
1287                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
1288                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
1289                  Q( JR, J ) = TEMP
1290  310          CONTINUE
1291            END IF
1292*
1293*           Rotations from the right.
1294*
1295            TEMP = T( J+1, J+1 )
1296            CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
1297            T( J+1, J ) = ZERO
1298*
1299            DO 320 JR = IFRSTM, ILAST
1300               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
1301               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
1302               H( JR, J+1 ) = TEMP
1303  320       CONTINUE
1304            DO 330 JR = IFRSTM, ILAST - 1
1305               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
1306               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
1307               T( JR, J+1 ) = TEMP
1308  330       CONTINUE
1309            IF( ILZ ) THEN
1310               DO 340 JR = 1, N
1311                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
1312                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
1313                  Z( JR, J+1 ) = TEMP
1314  340          CONTINUE
1315            END IF
1316*
1317*           End of Double-Shift code
1318*
1319         END IF
1320*
1321         GO TO 350
1322*
1323*        End of iteration loop
1324*
1325  350    CONTINUE
1326  360 CONTINUE
1327*
1328*     Drop-through = non-convergence
1329*
1330      INFO = ILAST
1331      GO TO 420
1332*
1333*     Successful completion of all QZ steps
1334*
1335  380 CONTINUE
1336*
1337*     Set Eigenvalues 1:ILO-1
1338*
1339      DO 410 J = 1, ILO - 1
1340         IF( T( J, J ).LT.ZERO ) THEN
1341            IF( ILSCHR ) THEN
1342               DO 390 JR = 1, J
1343                  H( JR, J ) = -H( JR, J )
1344                  T( JR, J ) = -T( JR, J )
1345  390          CONTINUE
1346            ELSE
1347               H( J, J ) = -H( J, J )
1348               T( J, J ) = -T( J, J )
1349            END IF
1350            IF( ILZ ) THEN
1351               DO 400 JR = 1, N
1352                  Z( JR, J ) = -Z( JR, J )
1353  400          CONTINUE
1354            END IF
1355         END IF
1356         ALPHAR( J ) = H( J, J )
1357         ALPHAI( J ) = ZERO
1358         BETA( J ) = T( J, J )
1359  410 CONTINUE
1360*
1361*     Normal Termination
1362*
1363      INFO = 0
1364*
1365*     Exit (other than argument error) -- return optimal workspace size
1366*
1367  420 CONTINUE
1368      WORK( 1 ) = DBLE( N )
1369      RETURN
1370*
1371*     End of DHGEQZ
1372*
1373      END
1374