1*> \brief \b DLAED1 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DLAED1 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER CUTPNT, INFO, LDQ, N 26* DOUBLE PRECISION RHO 27* .. 28* .. Array Arguments .. 29* INTEGER INDXQ( * ), IWORK( * ) 30* DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> DLAED1 computes the updated eigensystem of a diagonal 40*> matrix after modification by a rank-one symmetric matrix. This 41*> routine is used only for the eigenproblem which requires all 42*> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles 43*> the case in which eigenvalues only or eigenvalues and eigenvectors 44*> of a full symmetric matrix (which was reduced to tridiagonal form) 45*> are desired. 46*> 47*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) 48*> 49*> where Z = Q**T*u, u is a vector of length N with ones in the 50*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. 51*> 52*> The eigenvectors of the original matrix are stored in Q, and the 53*> eigenvalues are in D. The algorithm consists of three stages: 54*> 55*> The first stage consists of deflating the size of the problem 56*> when there are multiple eigenvalues or if there is a zero in 57*> the Z vector. For each such occurrence the dimension of the 58*> secular equation problem is reduced by one. This stage is 59*> performed by the routine DLAED2. 60*> 61*> The second stage consists of calculating the updated 62*> eigenvalues. This is done by finding the roots of the secular 63*> equation via the routine DLAED4 (as called by DLAED3). 64*> This routine also calculates the eigenvectors of the current 65*> problem. 66*> 67*> The final stage consists of computing the updated eigenvectors 68*> directly using the updated eigenvalues. The eigenvectors for 69*> the current problem are multiplied with the eigenvectors from 70*> the overall problem. 71*> \endverbatim 72* 73* Arguments: 74* ========== 75* 76*> \param[in] N 77*> \verbatim 78*> N is INTEGER 79*> The dimension of the symmetric tridiagonal matrix. N >= 0. 80*> \endverbatim 81*> 82*> \param[in,out] D 83*> \verbatim 84*> D is DOUBLE PRECISION array, dimension (N) 85*> On entry, the eigenvalues of the rank-1-perturbed matrix. 86*> On exit, the eigenvalues of the repaired matrix. 87*> \endverbatim 88*> 89*> \param[in,out] Q 90*> \verbatim 91*> Q is DOUBLE PRECISION array, dimension (LDQ,N) 92*> On entry, the eigenvectors of the rank-1-perturbed matrix. 93*> On exit, the eigenvectors of the repaired tridiagonal matrix. 94*> \endverbatim 95*> 96*> \param[in] LDQ 97*> \verbatim 98*> LDQ is INTEGER 99*> The leading dimension of the array Q. LDQ >= max(1,N). 100*> \endverbatim 101*> 102*> \param[in,out] INDXQ 103*> \verbatim 104*> INDXQ is INTEGER array, dimension (N) 105*> On entry, the permutation which separately sorts the two 106*> subproblems in D into ascending order. 107*> On exit, the permutation which will reintegrate the 108*> subproblems back into sorted order, 109*> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. 110*> \endverbatim 111*> 112*> \param[in] RHO 113*> \verbatim 114*> RHO is DOUBLE PRECISION 115*> The subdiagonal entry used to create the rank-1 modification. 116*> \endverbatim 117*> 118*> \param[in] CUTPNT 119*> \verbatim 120*> CUTPNT is INTEGER 121*> The location of the last eigenvalue in the leading sub-matrix. 122*> min(1,N) <= CUTPNT <= N/2. 123*> \endverbatim 124*> 125*> \param[out] WORK 126*> \verbatim 127*> WORK is DOUBLE PRECISION array, dimension (4*N + N**2) 128*> \endverbatim 129*> 130*> \param[out] IWORK 131*> \verbatim 132*> IWORK is INTEGER array, dimension (4*N) 133*> \endverbatim 134*> 135*> \param[out] INFO 136*> \verbatim 137*> INFO is INTEGER 138*> = 0: successful exit. 139*> < 0: if INFO = -i, the i-th argument had an illegal value. 140*> > 0: if INFO = 1, an eigenvalue did not converge 141*> \endverbatim 142* 143* Authors: 144* ======== 145* 146*> \author Univ. of Tennessee 147*> \author Univ. of California Berkeley 148*> \author Univ. of Colorado Denver 149*> \author NAG Ltd. 150* 151*> \ingroup auxOTHERcomputational 152* 153*> \par Contributors: 154* ================== 155*> 156*> Jeff Rutter, Computer Science Division, University of California 157*> at Berkeley, USA \n 158*> Modified by Francoise Tisseur, University of Tennessee 159*> 160* ===================================================================== 161 SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, 162 $ INFO ) 163* 164* -- LAPACK computational routine -- 165* -- LAPACK is a software package provided by Univ. of Tennessee, -- 166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 167* 168* .. Scalar Arguments .. 169 INTEGER CUTPNT, INFO, LDQ, N 170 DOUBLE PRECISION RHO 171* .. 172* .. Array Arguments .. 173 INTEGER INDXQ( * ), IWORK( * ) 174 DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * ) 175* .. 176* 177* ===================================================================== 178* 179* .. Local Scalars .. 180 INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS, 181 $ IW, IZ, K, N1, N2, ZPP1 182* .. 183* .. External Subroutines .. 184 EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA 185* .. 186* .. Intrinsic Functions .. 187 INTRINSIC MAX, MIN 188* .. 189* .. Executable Statements .. 190* 191* Test the input parameters. 192* 193 INFO = 0 194* 195 IF( N.LT.0 ) THEN 196 INFO = -1 197 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN 198 INFO = -4 199 ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN 200 INFO = -7 201 END IF 202 IF( INFO.NE.0 ) THEN 203 CALL XERBLA( 'DLAED1', -INFO ) 204 RETURN 205 END IF 206* 207* Quick return if possible 208* 209 IF( N.EQ.0 ) 210 $ RETURN 211* 212* The following values are integer pointers which indicate 213* the portion of the workspace 214* used by a particular array in DLAED2 and DLAED3. 215* 216 IZ = 1 217 IDLMDA = IZ + N 218 IW = IDLMDA + N 219 IQ2 = IW + N 220* 221 INDX = 1 222 INDXC = INDX + N 223 COLTYP = INDXC + N 224 INDXP = COLTYP + N 225* 226* 227* Form the z-vector which consists of the last row of Q_1 and the 228* first row of Q_2. 229* 230 CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 ) 231 ZPP1 = CUTPNT + 1 232 CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 ) 233* 234* Deflate eigenvalues. 235* 236 CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ), 237 $ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ), 238 $ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ), 239 $ IWORK( COLTYP ), INFO ) 240* 241 IF( INFO.NE.0 ) 242 $ GO TO 20 243* 244* Solve Secular Equation. 245* 246 IF( K.NE.0 ) THEN 247 IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT + 248 $ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2 249 CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ), 250 $ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ), 251 $ WORK( IW ), WORK( IS ), INFO ) 252 IF( INFO.NE.0 ) 253 $ GO TO 20 254* 255* Prepare the INDXQ sorting permutation. 256* 257 N1 = K 258 N2 = N - K 259 CALL DLAMRG( N1, N2, D, 1, -1, INDXQ ) 260 ELSE 261 DO 10 I = 1, N 262 INDXQ( I ) = I 263 10 CONTINUE 264 END IF 265* 266 20 CONTINUE 267 RETURN 268* 269* End of DLAED1 270* 271 END 272