1*> \brief \b SLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLA_GBRFSX_EXTENDED + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gbrfsx_extended.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gbrfsx_extended.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gbrfsx_extended.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
22*                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
23*                                       COLEQU, C, B, LDB, Y, LDY,
24*                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
25*                                       ERR_BNDS_COMP, RES, AYB, DY,
26*                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
27*                                       DZ_UB, IGNORE_CWISE, INFO )
28*
29*       .. Scalar Arguments ..
30*       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
31*      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
32*       LOGICAL            COLEQU, IGNORE_CWISE
33*       REAL               RTHRESH, DZ_UB
34*       ..
35*       .. Array Arguments ..
36*       INTEGER            IPIV( * )
37*       REAL               AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
38*      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
39*       REAL               C( * ), AYB(*), RCOND, BERR_OUT(*),
40*      $                   ERR_BNDS_NORM( NRHS, * ),
41*      $                   ERR_BNDS_COMP( NRHS, * )
42*       ..
43*
44*
45*> \par Purpose:
46*  =============
47*>
48*> \verbatim
49*>
50*> SLA_GBRFSX_EXTENDED improves the computed solution to a system of
51*> linear equations by performing extra-precise iterative refinement
52*> and provides error bounds and backward error estimates for the solution.
53*> This subroutine is called by SGBRFSX to perform iterative refinement.
54*> In addition to normwise error bound, the code provides maximum
55*> componentwise error bound if possible. See comments for ERR_BNDS_NORM
56*> and ERR_BNDS_COMP for details of the error bounds. Note that this
57*> subroutine is only resonsible for setting the second fields of
58*> ERR_BNDS_NORM and ERR_BNDS_COMP.
59*> \endverbatim
60*
61*  Arguments:
62*  ==========
63*
64*> \param[in] PREC_TYPE
65*> \verbatim
66*>          PREC_TYPE is INTEGER
67*>     Specifies the intermediate precision to be used in refinement.
68*>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
69*>          = 'S':  Single
70*>          = 'D':  Double
71*>          = 'I':  Indigenous
72*>          = 'X' or 'E':  Extra
73*> \endverbatim
74*>
75*> \param[in] TRANS_TYPE
76*> \verbatim
77*>          TRANS_TYPE is INTEGER
78*>     Specifies the transposition operation on A.
79*>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
80*>          = 'N':  No transpose
81*>          = 'T':  Transpose
82*>          = 'C':  Conjugate transpose
83*> \endverbatim
84*>
85*> \param[in] N
86*> \verbatim
87*>          N is INTEGER
88*>     The number of linear equations, i.e., the order of the
89*>     matrix A.  N >= 0.
90*> \endverbatim
91*>
92*> \param[in] KL
93*> \verbatim
94*>          KL is INTEGER
95*>     The number of subdiagonals within the band of A.  KL >= 0.
96*> \endverbatim
97*>
98*> \param[in] KU
99*> \verbatim
100*>          KU is INTEGER
101*>     The number of superdiagonals within the band of A.  KU >= 0
102*> \endverbatim
103*>
104*> \param[in] NRHS
105*> \verbatim
106*>          NRHS is INTEGER
107*>     The number of right-hand-sides, i.e., the number of columns of the
108*>     matrix B.
109*> \endverbatim
110*>
111*> \param[in] AB
112*> \verbatim
113*>          AB is REAL array, dimension (LDAB,N)
114*>     On entry, the N-by-N matrix AB.
115*> \endverbatim
116*>
117*> \param[in] LDAB
118*> \verbatim
119*>          LDAB is INTEGER
120*>     The leading dimension of the array AB.  LDAB >= max(1,N).
121*> \endverbatim
122*>
123*> \param[in] AFB
124*> \verbatim
125*>          AFB is REAL array, dimension (LDAFB,N)
126*>     The factors L and U from the factorization
127*>     A = P*L*U as computed by SGBTRF.
128*> \endverbatim
129*>
130*> \param[in] LDAFB
131*> \verbatim
132*>          LDAFB is INTEGER
133*>     The leading dimension of the array AF.  LDAFB >= max(1,N).
134*> \endverbatim
135*>
136*> \param[in] IPIV
137*> \verbatim
138*>          IPIV is INTEGER array, dimension (N)
139*>     The pivot indices from the factorization A = P*L*U
140*>     as computed by SGBTRF; row i of the matrix was interchanged
141*>     with row IPIV(i).
142*> \endverbatim
143*>
144*> \param[in] COLEQU
145*> \verbatim
146*>          COLEQU is LOGICAL
147*>     If .TRUE. then column equilibration was done to A before calling
148*>     this routine. This is needed to compute the solution and error
149*>     bounds correctly.
150*> \endverbatim
151*>
152*> \param[in] C
153*> \verbatim
154*>          C is REAL array, dimension (N)
155*>     The column scale factors for A. If COLEQU = .FALSE., C
156*>     is not accessed. If C is input, each element of C should be a power
157*>     of the radix to ensure a reliable solution and error estimates.
158*>     Scaling by powers of the radix does not cause rounding errors unless
159*>     the result underflows or overflows. Rounding errors during scaling
160*>     lead to refining with a matrix that is not equivalent to the
161*>     input matrix, producing error estimates that may not be
162*>     reliable.
163*> \endverbatim
164*>
165*> \param[in] B
166*> \verbatim
167*>          B is REAL array, dimension (LDB,NRHS)
168*>     The right-hand-side matrix B.
169*> \endverbatim
170*>
171*> \param[in] LDB
172*> \verbatim
173*>          LDB is INTEGER
174*>     The leading dimension of the array B.  LDB >= max(1,N).
175*> \endverbatim
176*>
177*> \param[in,out] Y
178*> \verbatim
179*>          Y is REAL array, dimension (LDY,NRHS)
180*>     On entry, the solution matrix X, as computed by SGBTRS.
181*>     On exit, the improved solution matrix Y.
182*> \endverbatim
183*>
184*> \param[in] LDY
185*> \verbatim
186*>          LDY is INTEGER
187*>     The leading dimension of the array Y.  LDY >= max(1,N).
188*> \endverbatim
189*>
190*> \param[out] BERR_OUT
191*> \verbatim
192*>          BERR_OUT is REAL array, dimension (NRHS)
193*>     On exit, BERR_OUT(j) contains the componentwise relative backward
194*>     error for right-hand-side j from the formula
195*>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
196*>     where abs(Z) is the componentwise absolute value of the matrix
197*>     or vector Z. This is computed by SLA_LIN_BERR.
198*> \endverbatim
199*>
200*> \param[in] N_NORMS
201*> \verbatim
202*>          N_NORMS is INTEGER
203*>     Determines which error bounds to return (see ERR_BNDS_NORM
204*>     and ERR_BNDS_COMP).
205*>     If N_NORMS >= 1 return normwise error bounds.
206*>     If N_NORMS >= 2 return componentwise error bounds.
207*> \endverbatim
208*>
209*> \param[in,out] ERR_BNDS_NORM
210*> \verbatim
211*>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
212*>     For each right-hand side, this array contains information about
213*>     various error bounds and condition numbers corresponding to the
214*>     normwise relative error, which is defined as follows:
215*>
216*>     Normwise relative error in the ith solution vector:
217*>             max_j (abs(XTRUE(j,i) - X(j,i)))
218*>            ------------------------------
219*>                  max_j abs(X(j,i))
220*>
221*>     The array is indexed by the type of error information as described
222*>     below. There currently are up to three pieces of information
223*>     returned.
224*>
225*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
226*>     right-hand side.
227*>
228*>     The second index in ERR_BNDS_NORM(:,err) contains the following
229*>     three fields:
230*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
231*>              reciprocal condition number is less than the threshold
232*>              sqrt(n) * slamch('Epsilon').
233*>
234*>     err = 2 "Guaranteed" error bound: The estimated forward error,
235*>              almost certainly within a factor of 10 of the true error
236*>              so long as the next entry is greater than the threshold
237*>              sqrt(n) * slamch('Epsilon'). This error bound should only
238*>              be trusted if the previous boolean is true.
239*>
240*>     err = 3  Reciprocal condition number: Estimated normwise
241*>              reciprocal condition number.  Compared with the threshold
242*>              sqrt(n) * slamch('Epsilon') to determine if the error
243*>              estimate is "guaranteed". These reciprocal condition
244*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
245*>              appropriately scaled matrix Z.
246*>              Let Z = S*A, where S scales each row by a power of the
247*>              radix so all absolute row sums of Z are approximately 1.
248*>
249*>     This subroutine is only responsible for setting the second field
250*>     above.
251*>     See Lapack Working Note 165 for further details and extra
252*>     cautions.
253*> \endverbatim
254*>
255*> \param[in,out] ERR_BNDS_COMP
256*> \verbatim
257*>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
258*>     For each right-hand side, this array contains information about
259*>     various error bounds and condition numbers corresponding to the
260*>     componentwise relative error, which is defined as follows:
261*>
262*>     Componentwise relative error in the ith solution vector:
263*>                    abs(XTRUE(j,i) - X(j,i))
264*>             max_j ----------------------
265*>                         abs(X(j,i))
266*>
267*>     The array is indexed by the right-hand side i (on which the
268*>     componentwise relative error depends), and the type of error
269*>     information as described below. There currently are up to three
270*>     pieces of information returned for each right-hand side. If
271*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
272*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
273*>     the first (:,N_ERR_BNDS) entries are returned.
274*>
275*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
276*>     right-hand side.
277*>
278*>     The second index in ERR_BNDS_COMP(:,err) contains the following
279*>     three fields:
280*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
281*>              reciprocal condition number is less than the threshold
282*>              sqrt(n) * slamch('Epsilon').
283*>
284*>     err = 2 "Guaranteed" error bound: The estimated forward error,
285*>              almost certainly within a factor of 10 of the true error
286*>              so long as the next entry is greater than the threshold
287*>              sqrt(n) * slamch('Epsilon'). This error bound should only
288*>              be trusted if the previous boolean is true.
289*>
290*>     err = 3  Reciprocal condition number: Estimated componentwise
291*>              reciprocal condition number.  Compared with the threshold
292*>              sqrt(n) * slamch('Epsilon') to determine if the error
293*>              estimate is "guaranteed". These reciprocal condition
294*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
295*>              appropriately scaled matrix Z.
296*>              Let Z = S*(A*diag(x)), where x is the solution for the
297*>              current right-hand side and S scales each row of
298*>              A*diag(x) by a power of the radix so all absolute row
299*>              sums of Z are approximately 1.
300*>
301*>     This subroutine is only responsible for setting the second field
302*>     above.
303*>     See Lapack Working Note 165 for further details and extra
304*>     cautions.
305*> \endverbatim
306*>
307*> \param[in] RES
308*> \verbatim
309*>          RES is REAL array, dimension (N)
310*>     Workspace to hold the intermediate residual.
311*> \endverbatim
312*>
313*> \param[in] AYB
314*> \verbatim
315*>          AYB is REAL array, dimension (N)
316*>     Workspace. This can be the same workspace passed for Y_TAIL.
317*> \endverbatim
318*>
319*> \param[in] DY
320*> \verbatim
321*>          DY is REAL array, dimension (N)
322*>     Workspace to hold the intermediate solution.
323*> \endverbatim
324*>
325*> \param[in] Y_TAIL
326*> \verbatim
327*>          Y_TAIL is REAL array, dimension (N)
328*>     Workspace to hold the trailing bits of the intermediate solution.
329*> \endverbatim
330*>
331*> \param[in] RCOND
332*> \verbatim
333*>          RCOND is REAL
334*>     Reciprocal scaled condition number.  This is an estimate of the
335*>     reciprocal Skeel condition number of the matrix A after
336*>     equilibration (if done).  If this is less than the machine
337*>     precision (in particular, if it is zero), the matrix is singular
338*>     to working precision.  Note that the error may still be small even
339*>     if this number is very small and the matrix appears ill-
340*>     conditioned.
341*> \endverbatim
342*>
343*> \param[in] ITHRESH
344*> \verbatim
345*>          ITHRESH is INTEGER
346*>     The maximum number of residual computations allowed for
347*>     refinement. The default is 10. For 'aggressive' set to 100 to
348*>     permit convergence using approximate factorizations or
349*>     factorizations other than LU. If the factorization uses a
350*>     technique other than Gaussian elimination, the guarantees in
351*>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
352*> \endverbatim
353*>
354*> \param[in] RTHRESH
355*> \verbatim
356*>          RTHRESH is REAL
357*>     Determines when to stop refinement if the error estimate stops
358*>     decreasing. Refinement will stop when the next solution no longer
359*>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
360*>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
361*>     default value is 0.5. For 'aggressive' set to 0.9 to permit
362*>     convergence on extremely ill-conditioned matrices. See LAWN 165
363*>     for more details.
364*> \endverbatim
365*>
366*> \param[in] DZ_UB
367*> \verbatim
368*>          DZ_UB is REAL
369*>     Determines when to start considering componentwise convergence.
370*>     Componentwise convergence is only considered after each component
371*>     of the solution Y is stable, which we define as the relative
372*>     change in each component being less than DZ_UB. The default value
373*>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
374*>     more details.
375*> \endverbatim
376*>
377*> \param[in] IGNORE_CWISE
378*> \verbatim
379*>          IGNORE_CWISE is LOGICAL
380*>     If .TRUE. then ignore componentwise convergence. Default value
381*>     is .FALSE..
382*> \endverbatim
383*>
384*> \param[out] INFO
385*> \verbatim
386*>          INFO is INTEGER
387*>       = 0:  Successful exit.
388*>       < 0:  if INFO = -i, the ith argument to SGBTRS had an illegal
389*>             value
390*> \endverbatim
391*
392*  Authors:
393*  ========
394*
395*> \author Univ. of Tennessee
396*> \author Univ. of California Berkeley
397*> \author Univ. of Colorado Denver
398*> \author NAG Ltd.
399*
400*> \ingroup realGBcomputational
401*
402*  =====================================================================
403      SUBROUTINE SLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
404     $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
405     $                                COLEQU, C, B, LDB, Y, LDY,
406     $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
407     $                                ERR_BNDS_COMP, RES, AYB, DY,
408     $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
409     $                                DZ_UB, IGNORE_CWISE, INFO )
410*
411*  -- LAPACK computational routine --
412*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
413*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
414*
415*     .. Scalar Arguments ..
416      INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
417     $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
418      LOGICAL            COLEQU, IGNORE_CWISE
419      REAL               RTHRESH, DZ_UB
420*     ..
421*     .. Array Arguments ..
422      INTEGER            IPIV( * )
423      REAL               AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
424     $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
425      REAL               C( * ), AYB(*), RCOND, BERR_OUT(*),
426     $                   ERR_BNDS_NORM( NRHS, * ),
427     $                   ERR_BNDS_COMP( NRHS, * )
428*     ..
429*
430*  =====================================================================
431*
432*     .. Local Scalars ..
433      CHARACTER          TRANS
434      INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
435      REAL               YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
436     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
437     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
438     $                   EPS, HUGEVAL, INCR_THRESH
439      LOGICAL            INCR_PREC
440*     ..
441*     .. Parameters ..
442      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
443     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
444     $                   EXTRA_Y
445      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
446     $                   CONV_STATE = 2, NOPROG_STATE = 3 )
447      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
448     $                   EXTRA_Y = 2 )
449      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
450      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
451      INTEGER            CMP_ERR_I, PIV_GROWTH_I
452      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
453     $                   BERR_I = 3 )
454      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
455      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
456     $                   PIV_GROWTH_I = 9 )
457      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
458     $                   LA_LINRX_CWISE_I
459      PARAMETER          ( LA_LINRX_ITREF_I = 1,
460     $                   LA_LINRX_ITHRESH_I = 2 )
461      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
462      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
463     $                   LA_LINRX_RCOND_I
464      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
465      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
466*     ..
467*     .. External Subroutines ..
468      EXTERNAL           SAXPY, SCOPY, SGBTRS, SGBMV, BLAS_SGBMV_X,
469     $                   BLAS_SGBMV2_X, SLA_GBAMV, SLA_WWADDW, SLAMCH,
470     $                   CHLA_TRANSTYPE, SLA_LIN_BERR
471      REAL               SLAMCH
472      CHARACTER          CHLA_TRANSTYPE
473*     ..
474*     .. Intrinsic Functions ..
475      INTRINSIC          ABS, MAX, MIN
476*     ..
477*     .. Executable Statements ..
478*
479      IF (INFO.NE.0) RETURN
480      TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
481      EPS = SLAMCH( 'Epsilon' )
482      HUGEVAL = SLAMCH( 'Overflow' )
483*     Force HUGEVAL to Inf
484      HUGEVAL = HUGEVAL * HUGEVAL
485*     Using HUGEVAL may lead to spurious underflows.
486      INCR_THRESH = REAL( N ) * EPS
487      M = KL+KU+1
488
489      DO J = 1, NRHS
490         Y_PREC_STATE = EXTRA_RESIDUAL
491         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
492            DO I = 1, N
493               Y_TAIL( I ) = 0.0
494            END DO
495         END IF
496
497         DXRAT = 0.0
498         DXRATMAX = 0.0
499         DZRAT = 0.0
500         DZRATMAX = 0.0
501         FINAL_DX_X = HUGEVAL
502         FINAL_DZ_Z = HUGEVAL
503         PREVNORMDX = HUGEVAL
504         PREV_DZ_Z = HUGEVAL
505         DZ_Z = HUGEVAL
506         DX_X = HUGEVAL
507
508         X_STATE = WORKING_STATE
509         Z_STATE = UNSTABLE_STATE
510         INCR_PREC = .FALSE.
511
512         DO CNT = 1, ITHRESH
513*
514*        Compute residual RES = B_s - op(A_s) * Y,
515*            op(A) = A, A**T, or A**H depending on TRANS (and type).
516*
517            CALL SCOPY( N, B( 1, J ), 1, RES, 1 )
518            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
519               CALL SGBMV( TRANS, M, N, KL, KU, -1.0, AB, LDAB,
520     $              Y( 1, J ), 1, 1.0, RES, 1 )
521            ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
522               CALL BLAS_SGBMV_X( TRANS_TYPE, N, N, KL, KU,
523     $              -1.0, AB, LDAB, Y( 1, J ), 1, 1.0, RES, 1,
524     $              PREC_TYPE )
525            ELSE
526               CALL BLAS_SGBMV2_X( TRANS_TYPE, N, N, KL, KU, -1.0,
527     $              AB, LDAB, Y( 1, J ), Y_TAIL, 1, 1.0, RES, 1,
528     $              PREC_TYPE )
529            END IF
530
531!        XXX: RES is no longer needed.
532            CALL SCOPY( N, RES, 1, DY, 1 )
533            CALL SGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
534     $           INFO )
535*
536*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
537*
538            NORMX = 0.0
539            NORMY = 0.0
540            NORMDX = 0.0
541            DZ_Z = 0.0
542            YMIN = HUGEVAL
543
544            DO I = 1, N
545               YK = ABS( Y( I, J ) )
546               DYK = ABS( DY( I ) )
547
548               IF ( YK .NE. 0.0 ) THEN
549                  DZ_Z = MAX( DZ_Z, DYK / YK )
550               ELSE IF ( DYK .NE. 0.0 ) THEN
551                  DZ_Z = HUGEVAL
552               END IF
553
554               YMIN = MIN( YMIN, YK )
555
556               NORMY = MAX( NORMY, YK )
557
558               IF ( COLEQU ) THEN
559                  NORMX = MAX( NORMX, YK * C( I ) )
560                  NORMDX = MAX( NORMDX, DYK * C( I ) )
561               ELSE
562                  NORMX = NORMY
563                  NORMDX = MAX( NORMDX, DYK )
564               END IF
565            END DO
566
567            IF ( NORMX .NE. 0.0 ) THEN
568               DX_X = NORMDX / NORMX
569            ELSE IF ( NORMDX .EQ. 0.0 ) THEN
570               DX_X = 0.0
571            ELSE
572               DX_X = HUGEVAL
573            END IF
574
575            DXRAT = NORMDX / PREVNORMDX
576            DZRAT = DZ_Z / PREV_DZ_Z
577*
578*         Check termination criteria.
579*
580            IF ( .NOT.IGNORE_CWISE
581     $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
582     $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
583     $           INCR_PREC = .TRUE.
584
585            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
586     $           X_STATE = WORKING_STATE
587            IF ( X_STATE .EQ. WORKING_STATE ) THEN
588               IF ( DX_X .LE. EPS ) THEN
589                  X_STATE = CONV_STATE
590               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
591                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
592                     INCR_PREC = .TRUE.
593                  ELSE
594                     X_STATE = NOPROG_STATE
595                  END IF
596               ELSE
597                  IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
598               END IF
599               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
600            END IF
601
602            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
603     $           Z_STATE = WORKING_STATE
604            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
605     $           Z_STATE = WORKING_STATE
606            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
607               IF ( DZ_Z .LE. EPS ) THEN
608                  Z_STATE = CONV_STATE
609               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
610                  Z_STATE = UNSTABLE_STATE
611                  DZRATMAX = 0.0
612                  FINAL_DZ_Z = HUGEVAL
613               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
614                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
615                     INCR_PREC = .TRUE.
616                  ELSE
617                     Z_STATE = NOPROG_STATE
618                  END IF
619               ELSE
620                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
621               END IF
622               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
623            END IF
624*
625*           Exit if both normwise and componentwise stopped working,
626*           but if componentwise is unstable, let it go at least two
627*           iterations.
628*
629            IF ( X_STATE.NE.WORKING_STATE ) THEN
630               IF ( IGNORE_CWISE ) GOTO 666
631               IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
632     $              GOTO 666
633               IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
634            END IF
635
636            IF ( INCR_PREC ) THEN
637               INCR_PREC = .FALSE.
638               Y_PREC_STATE = Y_PREC_STATE + 1
639               DO I = 1, N
640                  Y_TAIL( I ) = 0.0
641               END DO
642            END IF
643
644            PREVNORMDX = NORMDX
645            PREV_DZ_Z = DZ_Z
646*
647*           Update soluton.
648*
649            IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
650               CALL SAXPY( N, 1.0, DY, 1, Y(1,J), 1 )
651            ELSE
652               CALL SLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
653            END IF
654
655         END DO
656*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
657 666     CONTINUE
658*
659*     Set final_* when cnt hits ithresh.
660*
661         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
662         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
663*
664*     Compute error bounds.
665*
666         IF ( N_NORMS .GE. 1 ) THEN
667            ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
668     $           FINAL_DX_X / (1 - DXRATMAX)
669         END IF
670         IF (N_NORMS .GE. 2) THEN
671            ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
672     $           FINAL_DZ_Z / (1 - DZRATMAX)
673         END IF
674*
675*     Compute componentwise relative backward error from formula
676*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
677*     where abs(Z) is the componentwise absolute value of the matrix
678*     or vector Z.
679*
680*        Compute residual RES = B_s - op(A_s) * Y,
681*            op(A) = A, A**T, or A**H depending on TRANS (and type).
682*
683         CALL SCOPY( N, B( 1, J ), 1, RES, 1 )
684         CALL SGBMV(TRANS, N, N, KL, KU, -1.0, AB, LDAB, Y(1,J),
685     $        1, 1.0, RES, 1 )
686
687         DO I = 1, N
688            AYB( I ) = ABS( B( I, J ) )
689         END DO
690*
691*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
692*
693        CALL SLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0,
694     $        AB, LDAB, Y(1, J), 1, 1.0, AYB, 1 )
695
696         CALL SLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
697*
698*     End of loop for each RHS
699*
700      END DO
701*
702      RETURN
703*
704*     End of SLA_GBRFSX_EXTENDED
705*
706      END
707