1*> \brief \b SLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLARZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          SIDE
25*       INTEGER            INCV, L, LDC, M, N
26*       REAL               TAU
27*       ..
28*       .. Array Arguments ..
29*       REAL               C( LDC, * ), V( * ), WORK( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> SLARZ applies a real elementary reflector H to a real M-by-N
39*> matrix C, from either the left or the right. H is represented in the
40*> form
41*>
42*>       H = I - tau * v * v**T
43*>
44*> where tau is a real scalar and v is a real vector.
45*>
46*> If tau = 0, then H is taken to be the unit matrix.
47*>
48*>
49*> H is a product of k elementary reflectors as returned by STZRZF.
50*> \endverbatim
51*
52*  Arguments:
53*  ==========
54*
55*> \param[in] SIDE
56*> \verbatim
57*>          SIDE is CHARACTER*1
58*>          = 'L': form  H * C
59*>          = 'R': form  C * H
60*> \endverbatim
61*>
62*> \param[in] M
63*> \verbatim
64*>          M is INTEGER
65*>          The number of rows of the matrix C.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*>          N is INTEGER
71*>          The number of columns of the matrix C.
72*> \endverbatim
73*>
74*> \param[in] L
75*> \verbatim
76*>          L is INTEGER
77*>          The number of entries of the vector V containing
78*>          the meaningful part of the Householder vectors.
79*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
80*> \endverbatim
81*>
82*> \param[in] V
83*> \verbatim
84*>          V is REAL array, dimension (1+(L-1)*abs(INCV))
85*>          The vector v in the representation of H as returned by
86*>          STZRZF. V is not used if TAU = 0.
87*> \endverbatim
88*>
89*> \param[in] INCV
90*> \verbatim
91*>          INCV is INTEGER
92*>          The increment between elements of v. INCV <> 0.
93*> \endverbatim
94*>
95*> \param[in] TAU
96*> \verbatim
97*>          TAU is REAL
98*>          The value tau in the representation of H.
99*> \endverbatim
100*>
101*> \param[in,out] C
102*> \verbatim
103*>          C is REAL array, dimension (LDC,N)
104*>          On entry, the M-by-N matrix C.
105*>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
106*>          or C * H if SIDE = 'R'.
107*> \endverbatim
108*>
109*> \param[in] LDC
110*> \verbatim
111*>          LDC is INTEGER
112*>          The leading dimension of the array C. LDC >= max(1,M).
113*> \endverbatim
114*>
115*> \param[out] WORK
116*> \verbatim
117*>          WORK is REAL array, dimension
118*>                         (N) if SIDE = 'L'
119*>                      or (M) if SIDE = 'R'
120*> \endverbatim
121*
122*  Authors:
123*  ========
124*
125*> \author Univ. of Tennessee
126*> \author Univ. of California Berkeley
127*> \author Univ. of Colorado Denver
128*> \author NAG Ltd.
129*
130*> \ingroup realOTHERcomputational
131*
132*> \par Contributors:
133*  ==================
134*>
135*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
136*
137*> \par Further Details:
138*  =====================
139*>
140*> \verbatim
141*> \endverbatim
142*>
143*  =====================================================================
144      SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
145*
146*  -- LAPACK computational routine --
147*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
148*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
149*
150*     .. Scalar Arguments ..
151      CHARACTER          SIDE
152      INTEGER            INCV, L, LDC, M, N
153      REAL               TAU
154*     ..
155*     .. Array Arguments ..
156      REAL               C( LDC, * ), V( * ), WORK( * )
157*     ..
158*
159*  =====================================================================
160*
161*     .. Parameters ..
162      REAL               ONE, ZERO
163      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
164*     ..
165*     .. External Subroutines ..
166      EXTERNAL           SAXPY, SCOPY, SGEMV, SGER
167*     ..
168*     .. External Functions ..
169      LOGICAL            LSAME
170      EXTERNAL           LSAME
171*     ..
172*     .. Executable Statements ..
173*
174      IF( LSAME( SIDE, 'L' ) ) THEN
175*
176*        Form  H * C
177*
178         IF( TAU.NE.ZERO ) THEN
179*
180*           w( 1:n ) = C( 1, 1:n )
181*
182            CALL SCOPY( N, C, LDC, WORK, 1 )
183*
184*           w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )**T * v( 1:l )
185*
186            CALL SGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V,
187     $                  INCV, ONE, WORK, 1 )
188*
189*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
190*
191            CALL SAXPY( N, -TAU, WORK, 1, C, LDC )
192*
193*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
194*                               tau * v( 1:l ) * w( 1:n )**T
195*
196            CALL SGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
197     $                 LDC )
198         END IF
199*
200      ELSE
201*
202*        Form  C * H
203*
204         IF( TAU.NE.ZERO ) THEN
205*
206*           w( 1:m ) = C( 1:m, 1 )
207*
208            CALL SCOPY( M, C, 1, WORK, 1 )
209*
210*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
211*
212            CALL SGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
213     $                  V, INCV, ONE, WORK, 1 )
214*
215*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
216*
217            CALL SAXPY( M, -TAU, WORK, 1, C, 1 )
218*
219*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
220*                               tau * w( 1:m ) * v( 1:l )**T
221*
222            CALL SGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
223     $                 LDC )
224*
225         END IF
226*
227      END IF
228*
229      RETURN
230*
231*     End of SLARZ
232*
233      END
234