1*> \brief \b SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLASYF_ROOK + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf_rook.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf_rook.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf_rook.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, KB, LDA, LDW, N, NB
26*       ..
27*       .. Array Arguments ..
28*       INTEGER            IPIV( * )
29*       REAL               A( LDA, * ), W( LDW, * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> SLASYF_ROOK computes a partial factorization of a real symmetric
39*> matrix A using the bounded Bunch-Kaufman ("rook") diagonal
40*> pivoting method. The partial factorization has the form:
41*>
42*> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
43*>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
44*>
45*> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
46*>       ( L21  I ) (  0  A22 ) (  0       I    )
47*>
48*> where the order of D is at most NB. The actual order is returned in
49*> the argument KB, and is either NB or NB-1, or N if N <= NB.
50*>
51*> SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses
52*> blocked code (calling Level 3 BLAS) to update the submatrix
53*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
54*> \endverbatim
55*
56*  Arguments:
57*  ==========
58*
59*> \param[in] UPLO
60*> \verbatim
61*>          UPLO is CHARACTER*1
62*>          Specifies whether the upper or lower triangular part of the
63*>          symmetric matrix A is stored:
64*>          = 'U':  Upper triangular
65*>          = 'L':  Lower triangular
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*>          N is INTEGER
71*>          The order of the matrix A.  N >= 0.
72*> \endverbatim
73*>
74*> \param[in] NB
75*> \verbatim
76*>          NB is INTEGER
77*>          The maximum number of columns of the matrix A that should be
78*>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
79*>          blocks.
80*> \endverbatim
81*>
82*> \param[out] KB
83*> \verbatim
84*>          KB is INTEGER
85*>          The number of columns of A that were actually factored.
86*>          KB is either NB-1 or NB, or N if N <= NB.
87*> \endverbatim
88*>
89*> \param[in,out] A
90*> \verbatim
91*>          A is REAL array, dimension (LDA,N)
92*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
93*>          n-by-n upper triangular part of A contains the upper
94*>          triangular part of the matrix A, and the strictly lower
95*>          triangular part of A is not referenced.  If UPLO = 'L', the
96*>          leading n-by-n lower triangular part of A contains the lower
97*>          triangular part of the matrix A, and the strictly upper
98*>          triangular part of A is not referenced.
99*>          On exit, A contains details of the partial factorization.
100*> \endverbatim
101*>
102*> \param[in] LDA
103*> \verbatim
104*>          LDA is INTEGER
105*>          The leading dimension of the array A.  LDA >= max(1,N).
106*> \endverbatim
107*>
108*> \param[out] IPIV
109*> \verbatim
110*>          IPIV is INTEGER array, dimension (N)
111*>          Details of the interchanges and the block structure of D.
112*>
113*>          If UPLO = 'U':
114*>             Only the last KB elements of IPIV are set.
115*>
116*>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
117*>             interchanged and D(k,k) is a 1-by-1 diagonal block.
118*>
119*>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
120*>             columns k and -IPIV(k) were interchanged and rows and
121*>             columns k-1 and -IPIV(k-1) were inerchaged,
122*>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
123*>
124*>          If UPLO = 'L':
125*>             Only the first KB elements of IPIV are set.
126*>
127*>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
128*>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
129*>
130*>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
131*>             columns k and -IPIV(k) were interchanged and rows and
132*>             columns k+1 and -IPIV(k+1) were inerchaged,
133*>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
134*> \endverbatim
135*>
136*> \param[out] W
137*> \verbatim
138*>          W is REAL array, dimension (LDW,NB)
139*> \endverbatim
140*>
141*> \param[in] LDW
142*> \verbatim
143*>          LDW is INTEGER
144*>          The leading dimension of the array W.  LDW >= max(1,N).
145*> \endverbatim
146*>
147*> \param[out] INFO
148*> \verbatim
149*>          INFO is INTEGER
150*>          = 0: successful exit
151*>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
152*>               has been completed, but the block diagonal matrix D is
153*>               exactly singular.
154*> \endverbatim
155*
156*  Authors:
157*  ========
158*
159*> \author Univ. of Tennessee
160*> \author Univ. of California Berkeley
161*> \author Univ. of Colorado Denver
162*> \author NAG Ltd.
163*
164*> \ingroup realSYcomputational
165*
166*> \par Contributors:
167*  ==================
168*>
169*> \verbatim
170*>
171*>  November 2013,     Igor Kozachenko,
172*>                  Computer Science Division,
173*>                  University of California, Berkeley
174*>
175*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
176*>                  School of Mathematics,
177*>                  University of Manchester
178*>
179*> \endverbatim
180*
181*  =====================================================================
182      SUBROUTINE SLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
183     $                        INFO )
184*
185*  -- LAPACK computational routine --
186*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
187*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
188*
189*     .. Scalar Arguments ..
190      CHARACTER          UPLO
191      INTEGER            INFO, KB, LDA, LDW, N, NB
192*     ..
193*     .. Array Arguments ..
194      INTEGER            IPIV( * )
195      REAL               A( LDA, * ), W( LDW, * )
196*     ..
197*
198*  =====================================================================
199*
200*     .. Parameters ..
201      REAL               ZERO, ONE
202      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
203      REAL               EIGHT, SEVTEN
204      PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
205*     ..
206*     .. Local Scalars ..
207      LOGICAL            DONE
208      INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, JP1, JP2, K, KK,
209     $                   KW, KKW, KP, KSTEP, P, II
210
211      REAL               ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
212     $                   STEMP, R1, ROWMAX, T, SFMIN
213*     ..
214*     .. External Functions ..
215      LOGICAL            LSAME
216      INTEGER            ISAMAX
217      REAL               SLAMCH
218      EXTERNAL           LSAME, ISAMAX, SLAMCH
219*     ..
220*     .. External Subroutines ..
221      EXTERNAL           SCOPY, SGEMM, SGEMV, SSCAL, SSWAP
222*     ..
223*     .. Intrinsic Functions ..
224      INTRINSIC          ABS, MAX, MIN, SQRT
225*     ..
226*     .. Executable Statements ..
227*
228      INFO = 0
229*
230*     Initialize ALPHA for use in choosing pivot block size.
231*
232      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
233*
234*     Compute machine safe minimum
235*
236      SFMIN = SLAMCH( 'S' )
237*
238      IF( LSAME( UPLO, 'U' ) ) THEN
239*
240*        Factorize the trailing columns of A using the upper triangle
241*        of A and working backwards, and compute the matrix W = U12*D
242*        for use in updating A11
243*
244*        K is the main loop index, decreasing from N in steps of 1 or 2
245*
246         K = N
247   10    CONTINUE
248*
249*        KW is the column of W which corresponds to column K of A
250*
251         KW = NB + K - N
252*
253*        Exit from loop
254*
255         IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
256     $      GO TO 30
257*
258         KSTEP = 1
259         P = K
260*
261*        Copy column K of A to column KW of W and update it
262*
263         CALL SCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
264         IF( K.LT.N )
265     $      CALL SGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
266     $                  LDA, W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
267*
268*        Determine rows and columns to be interchanged and whether
269*        a 1-by-1 or 2-by-2 pivot block will be used
270*
271         ABSAKK = ABS( W( K, KW ) )
272*
273*        IMAX is the row-index of the largest off-diagonal element in
274*        column K, and COLMAX is its absolute value.
275*        Determine both COLMAX and IMAX.
276*
277         IF( K.GT.1 ) THEN
278            IMAX = ISAMAX( K-1, W( 1, KW ), 1 )
279            COLMAX = ABS( W( IMAX, KW ) )
280         ELSE
281            COLMAX = ZERO
282         END IF
283*
284         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
285*
286*           Column K is zero or underflow: set INFO and continue
287*
288            IF( INFO.EQ.0 )
289     $         INFO = K
290            KP = K
291            CALL SCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
292         ELSE
293*
294*           ============================================================
295*
296*           Test for interchange
297*
298*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
299*           (used to handle NaN and Inf)
300*
301            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
302*
303*              no interchange, use 1-by-1 pivot block
304*
305               KP = K
306*
307            ELSE
308*
309               DONE = .FALSE.
310*
311*              Loop until pivot found
312*
313   12          CONTINUE
314*
315*                 Begin pivot search loop body
316*
317*
318*                 Copy column IMAX to column KW-1 of W and update it
319*
320                  CALL SCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
321                  CALL SCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
322     $                        W( IMAX+1, KW-1 ), 1 )
323*
324                  IF( K.LT.N )
325     $               CALL SGEMV( 'No transpose', K, N-K, -ONE,
326     $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
327     $                           ONE, W( 1, KW-1 ), 1 )
328*
329*                 JMAX is the column-index of the largest off-diagonal
330*                 element in row IMAX, and ROWMAX is its absolute value.
331*                 Determine both ROWMAX and JMAX.
332*
333                  IF( IMAX.NE.K ) THEN
334                     JMAX = IMAX + ISAMAX( K-IMAX, W( IMAX+1, KW-1 ),
335     $                                     1 )
336                     ROWMAX = ABS( W( JMAX, KW-1 ) )
337                  ELSE
338                     ROWMAX = ZERO
339                  END IF
340*
341                  IF( IMAX.GT.1 ) THEN
342                     ITEMP = ISAMAX( IMAX-1, W( 1, KW-1 ), 1 )
343                     STEMP = ABS( W( ITEMP, KW-1 ) )
344                     IF( STEMP.GT.ROWMAX ) THEN
345                        ROWMAX = STEMP
346                        JMAX = ITEMP
347                     END IF
348                  END IF
349*
350*                 Equivalent to testing for
351*                 ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
352*                 (used to handle NaN and Inf)
353*
354                  IF( .NOT.(ABS( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
355     $            THEN
356*
357*                    interchange rows and columns K and IMAX,
358*                    use 1-by-1 pivot block
359*
360                     KP = IMAX
361*
362*                    copy column KW-1 of W to column KW of W
363*
364                     CALL SCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
365*
366                     DONE = .TRUE.
367*
368*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
369*                 (used to handle NaN and Inf)
370*
371                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
372     $            THEN
373*
374*                    interchange rows and columns K-1 and IMAX,
375*                    use 2-by-2 pivot block
376*
377                     KP = IMAX
378                     KSTEP = 2
379                     DONE = .TRUE.
380                  ELSE
381*
382*                    Pivot not found: set params and repeat
383*
384                     P = IMAX
385                     COLMAX = ROWMAX
386                     IMAX = JMAX
387*
388*                    Copy updated JMAXth (next IMAXth) column to Kth of W
389*
390                     CALL SCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
391*
392                  END IF
393*
394*                 End pivot search loop body
395*
396               IF( .NOT. DONE ) GOTO 12
397*
398            END IF
399*
400*           ============================================================
401*
402            KK = K - KSTEP + 1
403*
404*           KKW is the column of W which corresponds to column KK of A
405*
406            KKW = NB + KK - N
407*
408            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
409*
410*              Copy non-updated column K to column P
411*
412               CALL SCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
413               CALL SCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
414*
415*              Interchange rows K and P in last N-K+1 columns of A
416*              and last N-K+2 columns of W
417*
418               CALL SSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
419               CALL SSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
420            END IF
421*
422*           Updated column KP is already stored in column KKW of W
423*
424            IF( KP.NE.KK ) THEN
425*
426*              Copy non-updated column KK to column KP
427*
428               A( KP, K ) = A( KK, K )
429               CALL SCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
430     $                     LDA )
431               CALL SCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
432*
433*              Interchange rows KK and KP in last N-KK+1 columns
434*              of A and W
435*
436               CALL SSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
437               CALL SSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
438     $                     LDW )
439            END IF
440*
441            IF( KSTEP.EQ.1 ) THEN
442*
443*              1-by-1 pivot block D(k): column KW of W now holds
444*
445*              W(k) = U(k)*D(k)
446*
447*              where U(k) is the k-th column of U
448*
449*              Store U(k) in column k of A
450*
451               CALL SCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
452               IF( K.GT.1 ) THEN
453                  IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
454                     R1 = ONE / A( K, K )
455                     CALL SSCAL( K-1, R1, A( 1, K ), 1 )
456                  ELSE IF( A( K, K ).NE.ZERO ) THEN
457                     DO 14 II = 1, K - 1
458                        A( II, K ) = A( II, K ) / A( K, K )
459   14                CONTINUE
460                  END IF
461               END IF
462*
463            ELSE
464*
465*              2-by-2 pivot block D(k): columns KW and KW-1 of W now
466*              hold
467*
468*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
469*
470*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
471*              of U
472*
473               IF( K.GT.2 ) THEN
474*
475*                 Store U(k) and U(k-1) in columns k and k-1 of A
476*
477                  D12 = W( K-1, KW )
478                  D11 = W( K, KW ) / D12
479                  D22 = W( K-1, KW-1 ) / D12
480                  T = ONE / ( D11*D22-ONE )
481                  DO 20 J = 1, K - 2
482                     A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
483     $                             D12 )
484                     A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
485     $                           D12 )
486   20             CONTINUE
487               END IF
488*
489*              Copy D(k) to A
490*
491               A( K-1, K-1 ) = W( K-1, KW-1 )
492               A( K-1, K ) = W( K-1, KW )
493               A( K, K ) = W( K, KW )
494            END IF
495         END IF
496*
497*        Store details of the interchanges in IPIV
498*
499         IF( KSTEP.EQ.1 ) THEN
500            IPIV( K ) = KP
501         ELSE
502            IPIV( K ) = -P
503            IPIV( K-1 ) = -KP
504         END IF
505*
506*        Decrease K and return to the start of the main loop
507*
508         K = K - KSTEP
509         GO TO 10
510*
511   30    CONTINUE
512*
513*        Update the upper triangle of A11 (= A(1:k,1:k)) as
514*
515*        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
516*
517*        computing blocks of NB columns at a time
518*
519         DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
520            JB = MIN( NB, K-J+1 )
521*
522*           Update the upper triangle of the diagonal block
523*
524            DO 40 JJ = J, J + JB - 1
525               CALL SGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
526     $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
527     $                     A( J, JJ ), 1 )
528   40       CONTINUE
529*
530*           Update the rectangular superdiagonal block
531*
532            IF( J.GE.2 )
533     $         CALL SGEMM( 'No transpose', 'Transpose', J-1, JB,
534     $                  N-K, -ONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
535     $                  ONE, A( 1, J ), LDA )
536   50    CONTINUE
537*
538*        Put U12 in standard form by partially undoing the interchanges
539*        in columns k+1:n
540*
541         J = K + 1
542   60    CONTINUE
543*
544            KSTEP = 1
545            JP1 = 1
546            JJ = J
547            JP2 = IPIV( J )
548            IF( JP2.LT.0 ) THEN
549               JP2 = -JP2
550               J = J + 1
551               JP1 = -IPIV( J )
552               KSTEP = 2
553            END IF
554*
555            J = J + 1
556            IF( JP2.NE.JJ .AND. J.LE.N )
557     $         CALL SSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
558            JJ = J - 1
559            IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
560     $         CALL SSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
561         IF( J.LE.N )
562     $      GO TO 60
563*
564*        Set KB to the number of columns factorized
565*
566         KB = N - K
567*
568      ELSE
569*
570*        Factorize the leading columns of A using the lower triangle
571*        of A and working forwards, and compute the matrix W = L21*D
572*        for use in updating A22
573*
574*        K is the main loop index, increasing from 1 in steps of 1 or 2
575*
576         K = 1
577   70   CONTINUE
578*
579*        Exit from loop
580*
581         IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
582     $      GO TO 90
583*
584         KSTEP = 1
585         P = K
586*
587*        Copy column K of A to column K of W and update it
588*
589         CALL SCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
590         IF( K.GT.1 )
591     $      CALL SGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
592     $                  LDA, W( K, 1 ), LDW, ONE, W( K, K ), 1 )
593*
594*        Determine rows and columns to be interchanged and whether
595*        a 1-by-1 or 2-by-2 pivot block will be used
596*
597         ABSAKK = ABS( W( K, K ) )
598*
599*        IMAX is the row-index of the largest off-diagonal element in
600*        column K, and COLMAX is its absolute value.
601*        Determine both COLMAX and IMAX.
602*
603         IF( K.LT.N ) THEN
604            IMAX = K + ISAMAX( N-K, W( K+1, K ), 1 )
605            COLMAX = ABS( W( IMAX, K ) )
606         ELSE
607            COLMAX = ZERO
608         END IF
609*
610         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
611*
612*           Column K is zero or underflow: set INFO and continue
613*
614            IF( INFO.EQ.0 )
615     $         INFO = K
616            KP = K
617            CALL SCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
618         ELSE
619*
620*           ============================================================
621*
622*           Test for interchange
623*
624*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
625*           (used to handle NaN and Inf)
626*
627            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
628*
629*              no interchange, use 1-by-1 pivot block
630*
631               KP = K
632*
633            ELSE
634*
635               DONE = .FALSE.
636*
637*              Loop until pivot found
638*
639   72          CONTINUE
640*
641*                 Begin pivot search loop body
642*
643*
644*                 Copy column IMAX to column K+1 of W and update it
645*
646                  CALL SCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
647                  CALL SCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
648     $                        W( IMAX, K+1 ), 1 )
649                  IF( K.GT.1 )
650     $               CALL SGEMV( 'No transpose', N-K+1, K-1, -ONE,
651     $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
652     $                           ONE, W( K, K+1 ), 1 )
653*
654*                 JMAX is the column-index of the largest off-diagonal
655*                 element in row IMAX, and ROWMAX is its absolute value.
656*                 Determine both ROWMAX and JMAX.
657*
658                  IF( IMAX.NE.K ) THEN
659                     JMAX = K - 1 + ISAMAX( IMAX-K, W( K, K+1 ), 1 )
660                     ROWMAX = ABS( W( JMAX, K+1 ) )
661                  ELSE
662                     ROWMAX = ZERO
663                  END IF
664*
665                  IF( IMAX.LT.N ) THEN
666                     ITEMP = IMAX + ISAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
667                     STEMP = ABS( W( ITEMP, K+1 ) )
668                     IF( STEMP.GT.ROWMAX ) THEN
669                        ROWMAX = STEMP
670                        JMAX = ITEMP
671                     END IF
672                  END IF
673*
674*                 Equivalent to testing for
675*                 ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
676*                 (used to handle NaN and Inf)
677*
678                  IF( .NOT.( ABS( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
679     $            THEN
680*
681*                    interchange rows and columns K and IMAX,
682*                    use 1-by-1 pivot block
683*
684                     KP = IMAX
685*
686*                    copy column K+1 of W to column K of W
687*
688                     CALL SCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
689*
690                     DONE = .TRUE.
691*
692*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
693*                 (used to handle NaN and Inf)
694*
695                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
696     $            THEN
697*
698*                    interchange rows and columns K+1 and IMAX,
699*                    use 2-by-2 pivot block
700*
701                     KP = IMAX
702                     KSTEP = 2
703                     DONE = .TRUE.
704                  ELSE
705*
706*                    Pivot not found: set params and repeat
707*
708                     P = IMAX
709                     COLMAX = ROWMAX
710                     IMAX = JMAX
711*
712*                    Copy updated JMAXth (next IMAXth) column to Kth of W
713*
714                     CALL SCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
715*
716                  END IF
717*
718*                 End pivot search loop body
719*
720               IF( .NOT. DONE ) GOTO 72
721*
722            END IF
723*
724*           ============================================================
725*
726            KK = K + KSTEP - 1
727*
728            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
729*
730*              Copy non-updated column K to column P
731*
732               CALL SCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
733               CALL SCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
734*
735*              Interchange rows K and P in first K columns of A
736*              and first K+1 columns of W
737*
738               CALL SSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
739               CALL SSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
740            END IF
741*
742*           Updated column KP is already stored in column KK of W
743*
744            IF( KP.NE.KK ) THEN
745*
746*              Copy non-updated column KK to column KP
747*
748               A( KP, K ) = A( KK, K )
749               CALL SCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
750               CALL SCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
751*
752*              Interchange rows KK and KP in first KK columns of A and W
753*
754               CALL SSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
755               CALL SSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
756            END IF
757*
758            IF( KSTEP.EQ.1 ) THEN
759*
760*              1-by-1 pivot block D(k): column k of W now holds
761*
762*              W(k) = L(k)*D(k)
763*
764*              where L(k) is the k-th column of L
765*
766*              Store L(k) in column k of A
767*
768               CALL SCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
769               IF( K.LT.N ) THEN
770                  IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
771                     R1 = ONE / A( K, K )
772                     CALL SSCAL( N-K, R1, A( K+1, K ), 1 )
773                  ELSE IF( A( K, K ).NE.ZERO ) THEN
774                     DO 74 II = K + 1, N
775                        A( II, K ) = A( II, K ) / A( K, K )
776   74                CONTINUE
777                  END IF
778               END IF
779*
780            ELSE
781*
782*              2-by-2 pivot block D(k): columns k and k+1 of W now hold
783*
784*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
785*
786*              where L(k) and L(k+1) are the k-th and (k+1)-th columns
787*              of L
788*
789               IF( K.LT.N-1 ) THEN
790*
791*                 Store L(k) and L(k+1) in columns k and k+1 of A
792*
793                  D21 = W( K+1, K )
794                  D11 = W( K+1, K+1 ) / D21
795                  D22 = W( K, K ) / D21
796                  T = ONE / ( D11*D22-ONE )
797                  DO 80 J = K + 2, N
798                     A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
799     $                           D21 )
800                     A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
801     $                             D21 )
802   80             CONTINUE
803               END IF
804*
805*              Copy D(k) to A
806*
807               A( K, K ) = W( K, K )
808               A( K+1, K ) = W( K+1, K )
809               A( K+1, K+1 ) = W( K+1, K+1 )
810            END IF
811         END IF
812*
813*        Store details of the interchanges in IPIV
814*
815         IF( KSTEP.EQ.1 ) THEN
816            IPIV( K ) = KP
817         ELSE
818            IPIV( K ) = -P
819            IPIV( K+1 ) = -KP
820         END IF
821*
822*        Increase K and return to the start of the main loop
823*
824         K = K + KSTEP
825         GO TO 70
826*
827   90    CONTINUE
828*
829*        Update the lower triangle of A22 (= A(k:n,k:n)) as
830*
831*        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
832*
833*        computing blocks of NB columns at a time
834*
835         DO 110 J = K, N, NB
836            JB = MIN( NB, N-J+1 )
837*
838*           Update the lower triangle of the diagonal block
839*
840            DO 100 JJ = J, J + JB - 1
841               CALL SGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
842     $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
843     $                     A( JJ, JJ ), 1 )
844  100       CONTINUE
845*
846*           Update the rectangular subdiagonal block
847*
848            IF( J+JB.LE.N )
849     $         CALL SGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
850     $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
851     $                     ONE, A( J+JB, J ), LDA )
852  110    CONTINUE
853*
854*        Put L21 in standard form by partially undoing the interchanges
855*        in columns 1:k-1
856*
857         J = K - 1
858  120    CONTINUE
859*
860            KSTEP = 1
861            JP1 = 1
862            JJ = J
863            JP2 = IPIV( J )
864            IF( JP2.LT.0 ) THEN
865               JP2 = -JP2
866               J = J - 1
867               JP1 = -IPIV( J )
868               KSTEP = 2
869            END IF
870*
871            J = J - 1
872            IF( JP2.NE.JJ .AND. J.GE.1 )
873     $         CALL SSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
874            JJ = J + 1
875            IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
876     $         CALL SSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
877         IF( J.GE.1 )
878     $      GO TO 120
879*
880*        Set KB to the number of columns factorized
881*
882         KB = K - 1
883*
884      END IF
885      RETURN
886*
887*     End of SLASYF_ROOK
888*
889      END
890