1*> \brief \b SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm). 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SORMR2 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormr2.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormr2.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormr2.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 22* WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER SIDE, TRANS 26* INTEGER INFO, K, LDA, LDC, M, N 27* .. 28* .. Array Arguments .. 29* REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> SORMR2 overwrites the general real m by n matrix C with 39*> 40*> Q * C if SIDE = 'L' and TRANS = 'N', or 41*> 42*> Q**T* C if SIDE = 'L' and TRANS = 'T', or 43*> 44*> C * Q if SIDE = 'R' and TRANS = 'N', or 45*> 46*> C * Q**T if SIDE = 'R' and TRANS = 'T', 47*> 48*> where Q is a real orthogonal matrix defined as the product of k 49*> elementary reflectors 50*> 51*> Q = H(1) H(2) . . . H(k) 52*> 53*> as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n 54*> if SIDE = 'R'. 55*> \endverbatim 56* 57* Arguments: 58* ========== 59* 60*> \param[in] SIDE 61*> \verbatim 62*> SIDE is CHARACTER*1 63*> = 'L': apply Q or Q**T from the Left 64*> = 'R': apply Q or Q**T from the Right 65*> \endverbatim 66*> 67*> \param[in] TRANS 68*> \verbatim 69*> TRANS is CHARACTER*1 70*> = 'N': apply Q (No transpose) 71*> = 'T': apply Q' (Transpose) 72*> \endverbatim 73*> 74*> \param[in] M 75*> \verbatim 76*> M is INTEGER 77*> The number of rows of the matrix C. M >= 0. 78*> \endverbatim 79*> 80*> \param[in] N 81*> \verbatim 82*> N is INTEGER 83*> The number of columns of the matrix C. N >= 0. 84*> \endverbatim 85*> 86*> \param[in] K 87*> \verbatim 88*> K is INTEGER 89*> The number of elementary reflectors whose product defines 90*> the matrix Q. 91*> If SIDE = 'L', M >= K >= 0; 92*> if SIDE = 'R', N >= K >= 0. 93*> \endverbatim 94*> 95*> \param[in] A 96*> \verbatim 97*> A is REAL array, dimension 98*> (LDA,M) if SIDE = 'L', 99*> (LDA,N) if SIDE = 'R' 100*> The i-th row must contain the vector which defines the 101*> elementary reflector H(i), for i = 1,2,...,k, as returned by 102*> SGERQF in the last k rows of its array argument A. 103*> A is modified by the routine but restored on exit. 104*> \endverbatim 105*> 106*> \param[in] LDA 107*> \verbatim 108*> LDA is INTEGER 109*> The leading dimension of the array A. LDA >= max(1,K). 110*> \endverbatim 111*> 112*> \param[in] TAU 113*> \verbatim 114*> TAU is REAL array, dimension (K) 115*> TAU(i) must contain the scalar factor of the elementary 116*> reflector H(i), as returned by SGERQF. 117*> \endverbatim 118*> 119*> \param[in,out] C 120*> \verbatim 121*> C is REAL array, dimension (LDC,N) 122*> On entry, the m by n matrix C. 123*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. 124*> \endverbatim 125*> 126*> \param[in] LDC 127*> \verbatim 128*> LDC is INTEGER 129*> The leading dimension of the array C. LDC >= max(1,M). 130*> \endverbatim 131*> 132*> \param[out] WORK 133*> \verbatim 134*> WORK is REAL array, dimension 135*> (N) if SIDE = 'L', 136*> (M) if SIDE = 'R' 137*> \endverbatim 138*> 139*> \param[out] INFO 140*> \verbatim 141*> INFO is INTEGER 142*> = 0: successful exit 143*> < 0: if INFO = -i, the i-th argument had an illegal value 144*> \endverbatim 145* 146* Authors: 147* ======== 148* 149*> \author Univ. of Tennessee 150*> \author Univ. of California Berkeley 151*> \author Univ. of Colorado Denver 152*> \author NAG Ltd. 153* 154*> \ingroup realOTHERcomputational 155* 156* ===================================================================== 157 SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 158 $ WORK, INFO ) 159* 160* -- LAPACK computational routine -- 161* -- LAPACK is a software package provided by Univ. of Tennessee, -- 162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 163* 164* .. Scalar Arguments .. 165 CHARACTER SIDE, TRANS 166 INTEGER INFO, K, LDA, LDC, M, N 167* .. 168* .. Array Arguments .. 169 REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) 170* .. 171* 172* ===================================================================== 173* 174* .. Parameters .. 175 REAL ONE 176 PARAMETER ( ONE = 1.0E+0 ) 177* .. 178* .. Local Scalars .. 179 LOGICAL LEFT, NOTRAN 180 INTEGER I, I1, I2, I3, MI, NI, NQ 181 REAL AII 182* .. 183* .. External Functions .. 184 LOGICAL LSAME 185 EXTERNAL LSAME 186* .. 187* .. External Subroutines .. 188 EXTERNAL SLARF, XERBLA 189* .. 190* .. Intrinsic Functions .. 191 INTRINSIC MAX 192* .. 193* .. Executable Statements .. 194* 195* Test the input arguments 196* 197 INFO = 0 198 LEFT = LSAME( SIDE, 'L' ) 199 NOTRAN = LSAME( TRANS, 'N' ) 200* 201* NQ is the order of Q 202* 203 IF( LEFT ) THEN 204 NQ = M 205 ELSE 206 NQ = N 207 END IF 208 IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN 209 INFO = -1 210 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN 211 INFO = -2 212 ELSE IF( M.LT.0 ) THEN 213 INFO = -3 214 ELSE IF( N.LT.0 ) THEN 215 INFO = -4 216 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN 217 INFO = -5 218 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN 219 INFO = -7 220 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN 221 INFO = -10 222 END IF 223 IF( INFO.NE.0 ) THEN 224 CALL XERBLA( 'SORMR2', -INFO ) 225 RETURN 226 END IF 227* 228* Quick return if possible 229* 230 IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) 231 $ RETURN 232* 233 IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) ) 234 $ THEN 235 I1 = 1 236 I2 = K 237 I3 = 1 238 ELSE 239 I1 = K 240 I2 = 1 241 I3 = -1 242 END IF 243* 244 IF( LEFT ) THEN 245 NI = N 246 ELSE 247 MI = M 248 END IF 249* 250 DO 10 I = I1, I2, I3 251 IF( LEFT ) THEN 252* 253* H(i) is applied to C(1:m-k+i,1:n) 254* 255 MI = M - K + I 256 ELSE 257* 258* H(i) is applied to C(1:m,1:n-k+i) 259* 260 NI = N - K + I 261 END IF 262* 263* Apply H(i) 264* 265 AII = A( I, NQ-K+I ) 266 A( I, NQ-K+I ) = ONE 267 CALL SLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC, 268 $ WORK ) 269 A( I, NQ-K+I ) = AII 270 10 CONTINUE 271 RETURN 272* 273* End of SORMR2 274* 275 END 276