1*> \brief \b SPTRFS 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SPTRFS + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptrfs.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptrfs.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptrfs.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, 22* BERR, WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDB, LDX, N, NRHS 26* .. 27* .. Array Arguments .. 28* REAL B( LDB, * ), BERR( * ), D( * ), DF( * ), 29* $ E( * ), EF( * ), FERR( * ), WORK( * ), 30* $ X( LDX, * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> SPTRFS improves the computed solution to a system of linear 40*> equations when the coefficient matrix is symmetric positive definite 41*> and tridiagonal, and provides error bounds and backward error 42*> estimates for the solution. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] N 49*> \verbatim 50*> N is INTEGER 51*> The order of the matrix A. N >= 0. 52*> \endverbatim 53*> 54*> \param[in] NRHS 55*> \verbatim 56*> NRHS is INTEGER 57*> The number of right hand sides, i.e., the number of columns 58*> of the matrix B. NRHS >= 0. 59*> \endverbatim 60*> 61*> \param[in] D 62*> \verbatim 63*> D is REAL array, dimension (N) 64*> The n diagonal elements of the tridiagonal matrix A. 65*> \endverbatim 66*> 67*> \param[in] E 68*> \verbatim 69*> E is REAL array, dimension (N-1) 70*> The (n-1) subdiagonal elements of the tridiagonal matrix A. 71*> \endverbatim 72*> 73*> \param[in] DF 74*> \verbatim 75*> DF is REAL array, dimension (N) 76*> The n diagonal elements of the diagonal matrix D from the 77*> factorization computed by SPTTRF. 78*> \endverbatim 79*> 80*> \param[in] EF 81*> \verbatim 82*> EF is REAL array, dimension (N-1) 83*> The (n-1) subdiagonal elements of the unit bidiagonal factor 84*> L from the factorization computed by SPTTRF. 85*> \endverbatim 86*> 87*> \param[in] B 88*> \verbatim 89*> B is REAL array, dimension (LDB,NRHS) 90*> The right hand side matrix B. 91*> \endverbatim 92*> 93*> \param[in] LDB 94*> \verbatim 95*> LDB is INTEGER 96*> The leading dimension of the array B. LDB >= max(1,N). 97*> \endverbatim 98*> 99*> \param[in,out] X 100*> \verbatim 101*> X is REAL array, dimension (LDX,NRHS) 102*> On entry, the solution matrix X, as computed by SPTTRS. 103*> On exit, the improved solution matrix X. 104*> \endverbatim 105*> 106*> \param[in] LDX 107*> \verbatim 108*> LDX is INTEGER 109*> The leading dimension of the array X. LDX >= max(1,N). 110*> \endverbatim 111*> 112*> \param[out] FERR 113*> \verbatim 114*> FERR is REAL array, dimension (NRHS) 115*> The forward error bound for each solution vector 116*> X(j) (the j-th column of the solution matrix X). 117*> If XTRUE is the true solution corresponding to X(j), FERR(j) 118*> is an estimated upper bound for the magnitude of the largest 119*> element in (X(j) - XTRUE) divided by the magnitude of the 120*> largest element in X(j). 121*> \endverbatim 122*> 123*> \param[out] BERR 124*> \verbatim 125*> BERR is REAL array, dimension (NRHS) 126*> The componentwise relative backward error of each solution 127*> vector X(j) (i.e., the smallest relative change in 128*> any element of A or B that makes X(j) an exact solution). 129*> \endverbatim 130*> 131*> \param[out] WORK 132*> \verbatim 133*> WORK is REAL array, dimension (2*N) 134*> \endverbatim 135*> 136*> \param[out] INFO 137*> \verbatim 138*> INFO is INTEGER 139*> = 0: successful exit 140*> < 0: if INFO = -i, the i-th argument had an illegal value 141*> \endverbatim 142* 143*> \par Internal Parameters: 144* ========================= 145*> 146*> \verbatim 147*> ITMAX is the maximum number of steps of iterative refinement. 148*> \endverbatim 149* 150* Authors: 151* ======== 152* 153*> \author Univ. of Tennessee 154*> \author Univ. of California Berkeley 155*> \author Univ. of Colorado Denver 156*> \author NAG Ltd. 157* 158*> \ingroup realPTcomputational 159* 160* ===================================================================== 161 SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, 162 $ BERR, WORK, INFO ) 163* 164* -- LAPACK computational routine -- 165* -- LAPACK is a software package provided by Univ. of Tennessee, -- 166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 167* 168* .. Scalar Arguments .. 169 INTEGER INFO, LDB, LDX, N, NRHS 170* .. 171* .. Array Arguments .. 172 REAL B( LDB, * ), BERR( * ), D( * ), DF( * ), 173 $ E( * ), EF( * ), FERR( * ), WORK( * ), 174 $ X( LDX, * ) 175* .. 176* 177* ===================================================================== 178* 179* .. Parameters .. 180 INTEGER ITMAX 181 PARAMETER ( ITMAX = 5 ) 182 REAL ZERO 183 PARAMETER ( ZERO = 0.0E+0 ) 184 REAL ONE 185 PARAMETER ( ONE = 1.0E+0 ) 186 REAL TWO 187 PARAMETER ( TWO = 2.0E+0 ) 188 REAL THREE 189 PARAMETER ( THREE = 3.0E+0 ) 190* .. 191* .. Local Scalars .. 192 INTEGER COUNT, I, IX, J, NZ 193 REAL BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2, 194 $ SAFMIN 195* .. 196* .. External Subroutines .. 197 EXTERNAL SAXPY, SPTTRS, XERBLA 198* .. 199* .. Intrinsic Functions .. 200 INTRINSIC ABS, MAX 201* .. 202* .. External Functions .. 203 INTEGER ISAMAX 204 REAL SLAMCH 205 EXTERNAL ISAMAX, SLAMCH 206* .. 207* .. Executable Statements .. 208* 209* Test the input parameters. 210* 211 INFO = 0 212 IF( N.LT.0 ) THEN 213 INFO = -1 214 ELSE IF( NRHS.LT.0 ) THEN 215 INFO = -2 216 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 217 INFO = -8 218 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN 219 INFO = -10 220 END IF 221 IF( INFO.NE.0 ) THEN 222 CALL XERBLA( 'SPTRFS', -INFO ) 223 RETURN 224 END IF 225* 226* Quick return if possible 227* 228 IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN 229 DO 10 J = 1, NRHS 230 FERR( J ) = ZERO 231 BERR( J ) = ZERO 232 10 CONTINUE 233 RETURN 234 END IF 235* 236* NZ = maximum number of nonzero elements in each row of A, plus 1 237* 238 NZ = 4 239 EPS = SLAMCH( 'Epsilon' ) 240 SAFMIN = SLAMCH( 'Safe minimum' ) 241 SAFE1 = NZ*SAFMIN 242 SAFE2 = SAFE1 / EPS 243* 244* Do for each right hand side 245* 246 DO 90 J = 1, NRHS 247* 248 COUNT = 1 249 LSTRES = THREE 250 20 CONTINUE 251* 252* Loop until stopping criterion is satisfied. 253* 254* Compute residual R = B - A * X. Also compute 255* abs(A)*abs(x) + abs(b) for use in the backward error bound. 256* 257 IF( N.EQ.1 ) THEN 258 BI = B( 1, J ) 259 DX = D( 1 )*X( 1, J ) 260 WORK( N+1 ) = BI - DX 261 WORK( 1 ) = ABS( BI ) + ABS( DX ) 262 ELSE 263 BI = B( 1, J ) 264 DX = D( 1 )*X( 1, J ) 265 EX = E( 1 )*X( 2, J ) 266 WORK( N+1 ) = BI - DX - EX 267 WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX ) 268 DO 30 I = 2, N - 1 269 BI = B( I, J ) 270 CX = E( I-1 )*X( I-1, J ) 271 DX = D( I )*X( I, J ) 272 EX = E( I )*X( I+1, J ) 273 WORK( N+I ) = BI - CX - DX - EX 274 WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX ) 275 30 CONTINUE 276 BI = B( N, J ) 277 CX = E( N-1 )*X( N-1, J ) 278 DX = D( N )*X( N, J ) 279 WORK( N+N ) = BI - CX - DX 280 WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX ) 281 END IF 282* 283* Compute componentwise relative backward error from formula 284* 285* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) 286* 287* where abs(Z) is the componentwise absolute value of the matrix 288* or vector Z. If the i-th component of the denominator is less 289* than SAFE2, then SAFE1 is added to the i-th components of the 290* numerator and denominator before dividing. 291* 292 S = ZERO 293 DO 40 I = 1, N 294 IF( WORK( I ).GT.SAFE2 ) THEN 295 S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) ) 296 ELSE 297 S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) / 298 $ ( WORK( I )+SAFE1 ) ) 299 END IF 300 40 CONTINUE 301 BERR( J ) = S 302* 303* Test stopping criterion. Continue iterating if 304* 1) The residual BERR(J) is larger than machine epsilon, and 305* 2) BERR(J) decreased by at least a factor of 2 during the 306* last iteration, and 307* 3) At most ITMAX iterations tried. 308* 309 IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. 310 $ COUNT.LE.ITMAX ) THEN 311* 312* Update solution and try again. 313* 314 CALL SPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO ) 315 CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 ) 316 LSTRES = BERR( J ) 317 COUNT = COUNT + 1 318 GO TO 20 319 END IF 320* 321* Bound error from formula 322* 323* norm(X - XTRUE) / norm(X) .le. FERR = 324* norm( abs(inv(A))* 325* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) 326* 327* where 328* norm(Z) is the magnitude of the largest component of Z 329* inv(A) is the inverse of A 330* abs(Z) is the componentwise absolute value of the matrix or 331* vector Z 332* NZ is the maximum number of nonzeros in any row of A, plus 1 333* EPS is machine epsilon 334* 335* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) 336* is incremented by SAFE1 if the i-th component of 337* abs(A)*abs(X) + abs(B) is less than SAFE2. 338* 339 DO 50 I = 1, N 340 IF( WORK( I ).GT.SAFE2 ) THEN 341 WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) 342 ELSE 343 WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1 344 END IF 345 50 CONTINUE 346 IX = ISAMAX( N, WORK, 1 ) 347 FERR( J ) = WORK( IX ) 348* 349* Estimate the norm of inv(A). 350* 351* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by 352* 353* m(i,j) = abs(A(i,j)), i = j, 354* m(i,j) = -abs(A(i,j)), i .ne. j, 355* 356* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T. 357* 358* Solve M(L) * x = e. 359* 360 WORK( 1 ) = ONE 361 DO 60 I = 2, N 362 WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) ) 363 60 CONTINUE 364* 365* Solve D * M(L)**T * x = b. 366* 367 WORK( N ) = WORK( N ) / DF( N ) 368 DO 70 I = N - 1, 1, -1 369 WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) ) 370 70 CONTINUE 371* 372* Compute norm(inv(A)) = max(x(i)), 1<=i<=n. 373* 374 IX = ISAMAX( N, WORK, 1 ) 375 FERR( J ) = FERR( J )*ABS( WORK( IX ) ) 376* 377* Normalize error. 378* 379 LSTRES = ZERO 380 DO 80 I = 1, N 381 LSTRES = MAX( LSTRES, ABS( X( I, J ) ) ) 382 80 CONTINUE 383 IF( LSTRES.NE.ZERO ) 384 $ FERR( J ) = FERR( J ) / LSTRES 385* 386 90 CONTINUE 387* 388 RETURN 389* 390* End of SPTRFS 391* 392 END 393