1*> \brief <b> SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSPEVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
22*                          ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
23*                          INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE, UPLO
27*       INTEGER            IL, INFO, IU, LDZ, M, N
28*       REAL               ABSTOL, VL, VU
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            IFAIL( * ), IWORK( * )
32*       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> SSPEVX computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
43*> can be selected by specifying either a range of values or a range of
44*> indices for the desired eigenvalues.
45*> \endverbatim
46*
47*  Arguments:
48*  ==========
49*
50*> \param[in] JOBZ
51*> \verbatim
52*>          JOBZ is CHARACTER*1
53*>          = 'N':  Compute eigenvalues only;
54*>          = 'V':  Compute eigenvalues and eigenvectors.
55*> \endverbatim
56*>
57*> \param[in] RANGE
58*> \verbatim
59*>          RANGE is CHARACTER*1
60*>          = 'A': all eigenvalues will be found;
61*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
62*>                 will be found;
63*>          = 'I': the IL-th through IU-th eigenvalues will be found.
64*> \endverbatim
65*>
66*> \param[in] UPLO
67*> \verbatim
68*>          UPLO is CHARACTER*1
69*>          = 'U':  Upper triangle of A is stored;
70*>          = 'L':  Lower triangle of A is stored.
71*> \endverbatim
72*>
73*> \param[in] N
74*> \verbatim
75*>          N is INTEGER
76*>          The order of the matrix A.  N >= 0.
77*> \endverbatim
78*>
79*> \param[in,out] AP
80*> \verbatim
81*>          AP is REAL array, dimension (N*(N+1)/2)
82*>          On entry, the upper or lower triangle of the symmetric matrix
83*>          A, packed columnwise in a linear array.  The j-th column of A
84*>          is stored in the array AP as follows:
85*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
86*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
87*>
88*>          On exit, AP is overwritten by values generated during the
89*>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
90*>          and first superdiagonal of the tridiagonal matrix T overwrite
91*>          the corresponding elements of A, and if UPLO = 'L', the
92*>          diagonal and first subdiagonal of T overwrite the
93*>          corresponding elements of A.
94*> \endverbatim
95*>
96*> \param[in] VL
97*> \verbatim
98*>          VL is REAL
99*>          If RANGE='V', the lower bound of the interval to
100*>          be searched for eigenvalues. VL < VU.
101*>          Not referenced if RANGE = 'A' or 'I'.
102*> \endverbatim
103*>
104*> \param[in] VU
105*> \verbatim
106*>          VU is REAL
107*>          If RANGE='V', the upper bound of the interval to
108*>          be searched for eigenvalues. VL < VU.
109*>          Not referenced if RANGE = 'A' or 'I'.
110*> \endverbatim
111*>
112*> \param[in] IL
113*> \verbatim
114*>          IL is INTEGER
115*>          If RANGE='I', the index of the
116*>          smallest eigenvalue to be returned.
117*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
118*>          Not referenced if RANGE = 'A' or 'V'.
119*> \endverbatim
120*>
121*> \param[in] IU
122*> \verbatim
123*>          IU is INTEGER
124*>          If RANGE='I', the index of the
125*>          largest eigenvalue to be returned.
126*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
127*>          Not referenced if RANGE = 'A' or 'V'.
128*> \endverbatim
129*>
130*> \param[in] ABSTOL
131*> \verbatim
132*>          ABSTOL is REAL
133*>          The absolute error tolerance for the eigenvalues.
134*>          An approximate eigenvalue is accepted as converged
135*>          when it is determined to lie in an interval [a,b]
136*>          of width less than or equal to
137*>
138*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
139*>
140*>          where EPS is the machine precision.  If ABSTOL is less than
141*>          or equal to zero, then  EPS*|T|  will be used in its place,
142*>          where |T| is the 1-norm of the tridiagonal matrix obtained
143*>          by reducing AP to tridiagonal form.
144*>
145*>          Eigenvalues will be computed most accurately when ABSTOL is
146*>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
147*>          If this routine returns with INFO>0, indicating that some
148*>          eigenvectors did not converge, try setting ABSTOL to
149*>          2*SLAMCH('S').
150*>
151*>          See "Computing Small Singular Values of Bidiagonal Matrices
152*>          with Guaranteed High Relative Accuracy," by Demmel and
153*>          Kahan, LAPACK Working Note #3.
154*> \endverbatim
155*>
156*> \param[out] M
157*> \verbatim
158*>          M is INTEGER
159*>          The total number of eigenvalues found.  0 <= M <= N.
160*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
161*> \endverbatim
162*>
163*> \param[out] W
164*> \verbatim
165*>          W is REAL array, dimension (N)
166*>          If INFO = 0, the selected eigenvalues in ascending order.
167*> \endverbatim
168*>
169*> \param[out] Z
170*> \verbatim
171*>          Z is REAL array, dimension (LDZ, max(1,M))
172*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
173*>          contain the orthonormal eigenvectors of the matrix A
174*>          corresponding to the selected eigenvalues, with the i-th
175*>          column of Z holding the eigenvector associated with W(i).
176*>          If an eigenvector fails to converge, then that column of Z
177*>          contains the latest approximation to the eigenvector, and the
178*>          index of the eigenvector is returned in IFAIL.
179*>          If JOBZ = 'N', then Z is not referenced.
180*>          Note: the user must ensure that at least max(1,M) columns are
181*>          supplied in the array Z; if RANGE = 'V', the exact value of M
182*>          is not known in advance and an upper bound must be used.
183*> \endverbatim
184*>
185*> \param[in] LDZ
186*> \verbatim
187*>          LDZ is INTEGER
188*>          The leading dimension of the array Z.  LDZ >= 1, and if
189*>          JOBZ = 'V', LDZ >= max(1,N).
190*> \endverbatim
191*>
192*> \param[out] WORK
193*> \verbatim
194*>          WORK is REAL array, dimension (8*N)
195*> \endverbatim
196*>
197*> \param[out] IWORK
198*> \verbatim
199*>          IWORK is INTEGER array, dimension (5*N)
200*> \endverbatim
201*>
202*> \param[out] IFAIL
203*> \verbatim
204*>          IFAIL is INTEGER array, dimension (N)
205*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
206*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
207*>          indices of the eigenvectors that failed to converge.
208*>          If JOBZ = 'N', then IFAIL is not referenced.
209*> \endverbatim
210*>
211*> \param[out] INFO
212*> \verbatim
213*>          INFO is INTEGER
214*>          = 0:  successful exit
215*>          < 0:  if INFO = -i, the i-th argument had an illegal value
216*>          > 0:  if INFO = i, then i eigenvectors failed to converge.
217*>                Their indices are stored in array IFAIL.
218*> \endverbatim
219*
220*  Authors:
221*  ========
222*
223*> \author Univ. of Tennessee
224*> \author Univ. of California Berkeley
225*> \author Univ. of Colorado Denver
226*> \author NAG Ltd.
227*
228*> \ingroup realOTHEReigen
229*
230*  =====================================================================
231      SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
232     $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
233     $                   INFO )
234*
235*  -- LAPACK driver routine --
236*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
237*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
238*
239*     .. Scalar Arguments ..
240      CHARACTER          JOBZ, RANGE, UPLO
241      INTEGER            IL, INFO, IU, LDZ, M, N
242      REAL               ABSTOL, VL, VU
243*     ..
244*     .. Array Arguments ..
245      INTEGER            IFAIL( * ), IWORK( * )
246      REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
247*     ..
248*
249*  =====================================================================
250*
251*     .. Parameters ..
252      REAL               ZERO, ONE
253      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
254*     ..
255*     .. Local Scalars ..
256      LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
257      CHARACTER          ORDER
258      INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
259     $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
260     $                   J, JJ, NSPLIT
261      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
262     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
263*     ..
264*     .. External Functions ..
265      LOGICAL            LSAME
266      REAL               SLAMCH, SLANSP
267      EXTERNAL           LSAME, SLAMCH, SLANSP
268*     ..
269*     .. External Subroutines ..
270      EXTERNAL           SCOPY, SOPGTR, SOPMTR, SSCAL, SSPTRD, SSTEBZ,
271     $                   SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
272*     ..
273*     .. Intrinsic Functions ..
274      INTRINSIC          MAX, MIN, SQRT
275*     ..
276*     .. Executable Statements ..
277*
278*     Test the input parameters.
279*
280      WANTZ = LSAME( JOBZ, 'V' )
281      ALLEIG = LSAME( RANGE, 'A' )
282      VALEIG = LSAME( RANGE, 'V' )
283      INDEIG = LSAME( RANGE, 'I' )
284*
285      INFO = 0
286      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
287         INFO = -1
288      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
289         INFO = -2
290      ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
291     $          THEN
292         INFO = -3
293      ELSE IF( N.LT.0 ) THEN
294         INFO = -4
295      ELSE
296         IF( VALEIG ) THEN
297            IF( N.GT.0 .AND. VU.LE.VL )
298     $         INFO = -7
299         ELSE IF( INDEIG ) THEN
300            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
301               INFO = -8
302            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
303               INFO = -9
304            END IF
305         END IF
306      END IF
307      IF( INFO.EQ.0 ) THEN
308         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
309     $      INFO = -14
310      END IF
311*
312      IF( INFO.NE.0 ) THEN
313         CALL XERBLA( 'SSPEVX', -INFO )
314         RETURN
315      END IF
316*
317*     Quick return if possible
318*
319      M = 0
320      IF( N.EQ.0 )
321     $   RETURN
322*
323      IF( N.EQ.1 ) THEN
324         IF( ALLEIG .OR. INDEIG ) THEN
325            M = 1
326            W( 1 ) = AP( 1 )
327         ELSE
328            IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
329               M = 1
330               W( 1 ) = AP( 1 )
331            END IF
332         END IF
333         IF( WANTZ )
334     $      Z( 1, 1 ) = ONE
335         RETURN
336      END IF
337*
338*     Get machine constants.
339*
340      SAFMIN = SLAMCH( 'Safe minimum' )
341      EPS = SLAMCH( 'Precision' )
342      SMLNUM = SAFMIN / EPS
343      BIGNUM = ONE / SMLNUM
344      RMIN = SQRT( SMLNUM )
345      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
346*
347*     Scale matrix to allowable range, if necessary.
348*
349      ISCALE = 0
350      ABSTLL = ABSTOL
351      IF ( VALEIG ) THEN
352         VLL = VL
353         VUU = VU
354      ELSE
355         VLL = ZERO
356         VUU = ZERO
357      ENDIF
358      ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
359      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
360         ISCALE = 1
361         SIGMA = RMIN / ANRM
362      ELSE IF( ANRM.GT.RMAX ) THEN
363         ISCALE = 1
364         SIGMA = RMAX / ANRM
365      END IF
366      IF( ISCALE.EQ.1 ) THEN
367         CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
368         IF( ABSTOL.GT.0 )
369     $      ABSTLL = ABSTOL*SIGMA
370         IF( VALEIG ) THEN
371            VLL = VL*SIGMA
372            VUU = VU*SIGMA
373         END IF
374      END IF
375*
376*     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
377*
378      INDTAU = 1
379      INDE = INDTAU + N
380      INDD = INDE + N
381      INDWRK = INDD + N
382      CALL SSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
383     $             WORK( INDTAU ), IINFO )
384*
385*     If all eigenvalues are desired and ABSTOL is less than or equal
386*     to zero, then call SSTERF or SOPGTR and SSTEQR.  If this fails
387*     for some eigenvalue, then try SSTEBZ.
388*
389      TEST = .FALSE.
390      IF (INDEIG) THEN
391         IF (IL.EQ.1 .AND. IU.EQ.N) THEN
392            TEST = .TRUE.
393         END IF
394      END IF
395      IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
396         CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
397         INDEE = INDWRK + 2*N
398         IF( .NOT.WANTZ ) THEN
399            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
400            CALL SSTERF( N, W, WORK( INDEE ), INFO )
401         ELSE
402            CALL SOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
403     $                   WORK( INDWRK ), IINFO )
404            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
405            CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
406     $                   WORK( INDWRK ), INFO )
407            IF( INFO.EQ.0 ) THEN
408               DO 10 I = 1, N
409                  IFAIL( I ) = 0
410   10          CONTINUE
411            END IF
412         END IF
413         IF( INFO.EQ.0 ) THEN
414            M = N
415            GO TO 20
416         END IF
417         INFO = 0
418      END IF
419*
420*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
421*
422      IF( WANTZ ) THEN
423         ORDER = 'B'
424      ELSE
425         ORDER = 'E'
426      END IF
427      INDIBL = 1
428      INDISP = INDIBL + N
429      INDIWO = INDISP + N
430      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
431     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
432     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
433     $             IWORK( INDIWO ), INFO )
434*
435      IF( WANTZ ) THEN
436         CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
437     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
438     $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
439*
440*        Apply orthogonal matrix used in reduction to tridiagonal
441*        form to eigenvectors returned by SSTEIN.
442*
443         CALL SOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
444     $                WORK( INDWRK ), IINFO )
445      END IF
446*
447*     If matrix was scaled, then rescale eigenvalues appropriately.
448*
449   20 CONTINUE
450      IF( ISCALE.EQ.1 ) THEN
451         IF( INFO.EQ.0 ) THEN
452            IMAX = M
453         ELSE
454            IMAX = INFO - 1
455         END IF
456         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
457      END IF
458*
459*     If eigenvalues are not in order, then sort them, along with
460*     eigenvectors.
461*
462      IF( WANTZ ) THEN
463         DO 40 J = 1, M - 1
464            I = 0
465            TMP1 = W( J )
466            DO 30 JJ = J + 1, M
467               IF( W( JJ ).LT.TMP1 ) THEN
468                  I = JJ
469                  TMP1 = W( JJ )
470               END IF
471   30       CONTINUE
472*
473            IF( I.NE.0 ) THEN
474               ITMP1 = IWORK( INDIBL+I-1 )
475               W( I ) = W( J )
476               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
477               W( J ) = TMP1
478               IWORK( INDIBL+J-1 ) = ITMP1
479               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
480               IF( INFO.NE.0 ) THEN
481                  ITMP1 = IFAIL( I )
482                  IFAIL( I ) = IFAIL( J )
483                  IFAIL( J ) = ITMP1
484               END IF
485            END IF
486   40    CONTINUE
487      END IF
488*
489      RETURN
490*
491*     End of SSPEVX
492*
493      END
494