1*> \brief \b ZGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGEQRT2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZGEQRT2( M, N, A, LDA, T, LDT, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER   INFO, LDA, LDT, M, N
25*       ..
26*       .. Array Arguments ..
27*       COMPLEX*16   A( LDA, * ), T( LDT, * )
28*       ..
29*
30*
31*> \par Purpose:
32*  =============
33*>
34*> \verbatim
35*>
36*> ZGEQRT2 computes a QR factorization of a complex M-by-N matrix A,
37*> using the compact WY representation of Q.
38*> \endverbatim
39*
40*  Arguments:
41*  ==========
42*
43*> \param[in] M
44*> \verbatim
45*>          M is INTEGER
46*>          The number of rows of the matrix A.  M >= N.
47*> \endverbatim
48*>
49*> \param[in] N
50*> \verbatim
51*>          N is INTEGER
52*>          The number of columns of the matrix A.  N >= 0.
53*> \endverbatim
54*>
55*> \param[in,out] A
56*> \verbatim
57*>          A is COMPLEX*16 array, dimension (LDA,N)
58*>          On entry, the complex M-by-N matrix A.  On exit, the elements on and
59*>          above the diagonal contain the N-by-N upper triangular matrix R; the
60*>          elements below the diagonal are the columns of V.  See below for
61*>          further details.
62*> \endverbatim
63*>
64*> \param[in] LDA
65*> \verbatim
66*>          LDA is INTEGER
67*>          The leading dimension of the array A.  LDA >= max(1,M).
68*> \endverbatim
69*>
70*> \param[out] T
71*> \verbatim
72*>          T is COMPLEX*16 array, dimension (LDT,N)
73*>          The N-by-N upper triangular factor of the block reflector.
74*>          The elements on and above the diagonal contain the block
75*>          reflector T; the elements below the diagonal are not used.
76*>          See below for further details.
77*> \endverbatim
78*>
79*> \param[in] LDT
80*> \verbatim
81*>          LDT is INTEGER
82*>          The leading dimension of the array T.  LDT >= max(1,N).
83*> \endverbatim
84*>
85*> \param[out] INFO
86*> \verbatim
87*>          INFO is INTEGER
88*>          = 0: successful exit
89*>          < 0: if INFO = -i, the i-th argument had an illegal value
90*> \endverbatim
91*
92*  Authors:
93*  ========
94*
95*> \author Univ. of Tennessee
96*> \author Univ. of California Berkeley
97*> \author Univ. of Colorado Denver
98*> \author NAG Ltd.
99*
100*> \ingroup complex16GEcomputational
101*
102*> \par Further Details:
103*  =====================
104*>
105*> \verbatim
106*>
107*>  The matrix V stores the elementary reflectors H(i) in the i-th column
108*>  below the diagonal. For example, if M=5 and N=3, the matrix V is
109*>
110*>               V = (  1       )
111*>                   ( v1  1    )
112*>                   ( v1 v2  1 )
113*>                   ( v1 v2 v3 )
114*>                   ( v1 v2 v3 )
115*>
116*>  where the vi's represent the vectors which define H(i), which are returned
117*>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
118*>  block reflector H is then given by
119*>
120*>               H = I - V * T * V**H
121*>
122*>  where V**H is the conjugate transpose of V.
123*> \endverbatim
124*>
125*  =====================================================================
126      SUBROUTINE ZGEQRT2( M, N, A, LDA, T, LDT, INFO )
127*
128*  -- LAPACK computational routine --
129*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
130*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131*
132*     .. Scalar Arguments ..
133      INTEGER   INFO, LDA, LDT, M, N
134*     ..
135*     .. Array Arguments ..
136      COMPLEX*16   A( LDA, * ), T( LDT, * )
137*     ..
138*
139*  =====================================================================
140*
141*     .. Parameters ..
142      COMPLEX*16  ONE, ZERO
143      PARAMETER( ONE = (1.0D+00,0.0D+00), ZERO = (0.0D+00,0.0D+00) )
144*     ..
145*     .. Local Scalars ..
146      INTEGER   I, K
147      COMPLEX*16   AII, ALPHA
148*     ..
149*     .. External Subroutines ..
150      EXTERNAL  ZLARFG, ZGEMV, ZGERC, ZTRMV, XERBLA
151*     ..
152*     .. Executable Statements ..
153*
154*     Test the input arguments
155*
156      INFO = 0
157      IF( M.LT.0 ) THEN
158         INFO = -1
159      ELSE IF( N.LT.0 ) THEN
160         INFO = -2
161      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
162         INFO = -4
163      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
164         INFO = -6
165      END IF
166      IF( INFO.NE.0 ) THEN
167         CALL XERBLA( 'ZGEQRT2', -INFO )
168         RETURN
169      END IF
170*
171      K = MIN( M, N )
172*
173      DO I = 1, K
174*
175*        Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
176*
177         CALL ZLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
178     $                T( I, 1 ) )
179         IF( I.LT.N ) THEN
180*
181*           Apply H(i) to A(I:M,I+1:N) from the left
182*
183            AII = A( I, I )
184            A( I, I ) = ONE
185*
186*           W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
187*
188            CALL ZGEMV( 'C',M-I+1, N-I, ONE, A( I, I+1 ), LDA,
189     $                  A( I, I ), 1, ZERO, T( 1, N ), 1 )
190*
191*           A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
192*
193            ALPHA = -CONJG(T( I, 1 ))
194            CALL ZGERC( M-I+1, N-I, ALPHA, A( I, I ), 1,
195     $           T( 1, N ), 1, A( I, I+1 ), LDA )
196            A( I, I ) = AII
197         END IF
198      END DO
199*
200      DO I = 2, N
201         AII = A( I, I )
202         A( I, I ) = ONE
203*
204*        T(1:I-1,I) := alpha * A(I:M,1:I-1)**H * A(I:M,I)
205*
206         ALPHA = -T( I, 1 )
207         CALL ZGEMV( 'C', M-I+1, I-1, ALPHA, A( I, 1 ), LDA,
208     $               A( I, I ), 1, ZERO, T( 1, I ), 1 )
209         A( I, I ) = AII
210*
211*        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
212*
213         CALL ZTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
214*
215*           T(I,I) = tau(I)
216*
217            T( I, I ) = T( I, 1 )
218            T( I, 1) = ZERO
219      END DO
220
221*
222*     End of ZGEQRT2
223*
224      END
225