1*> \brief \b ZHGEQZ
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHGEQZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhgeqz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhgeqz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhgeqz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
22*                          ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
23*                          RWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          COMPQ, COMPZ, JOB
27*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   RWORK( * )
31*       COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
32*      $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
33*      $                   Z( LDZ, * )
34*       ..
35*
36*
37*> \par Purpose:
38*  =============
39*>
40*> \verbatim
41*>
42*> ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
43*> where H is an upper Hessenberg matrix and T is upper triangular,
44*> using the single-shift QZ method.
45*> Matrix pairs of this type are produced by the reduction to
46*> generalized upper Hessenberg form of a complex matrix pair (A,B):
47*>
48*>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
49*>
50*> as computed by ZGGHRD.
51*>
52*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
53*> also reduced to generalized Schur form,
54*>
55*>    H = Q*S*Z**H,  T = Q*P*Z**H,
56*>
57*> where Q and Z are unitary matrices and S and P are upper triangular.
58*>
59*> Optionally, the unitary matrix Q from the generalized Schur
60*> factorization may be postmultiplied into an input matrix Q1, and the
61*> unitary matrix Z may be postmultiplied into an input matrix Z1.
62*> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
63*> the matrix pair (A,B) to generalized Hessenberg form, then the output
64*> matrices Q1*Q and Z1*Z are the unitary factors from the generalized
65*> Schur factorization of (A,B):
66*>
67*>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
68*>
69*> To avoid overflow, eigenvalues of the matrix pair (H,T)
70*> (equivalently, of (A,B)) are computed as a pair of complex values
71*> (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an
72*> eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
73*>    A*x = lambda*B*x
74*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
75*> alternate form of the GNEP
76*>    mu*A*y = B*y.
77*> The values of alpha and beta for the i-th eigenvalue can be read
78*> directly from the generalized Schur form:  alpha = S(i,i),
79*> beta = P(i,i).
80*>
81*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
82*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
83*>      pp. 241--256.
84*> \endverbatim
85*
86*  Arguments:
87*  ==========
88*
89*> \param[in] JOB
90*> \verbatim
91*>          JOB is CHARACTER*1
92*>          = 'E': Compute eigenvalues only;
93*>          = 'S': Computer eigenvalues and the Schur form.
94*> \endverbatim
95*>
96*> \param[in] COMPQ
97*> \verbatim
98*>          COMPQ is CHARACTER*1
99*>          = 'N': Left Schur vectors (Q) are not computed;
100*>          = 'I': Q is initialized to the unit matrix and the matrix Q
101*>                 of left Schur vectors of (H,T) is returned;
102*>          = 'V': Q must contain a unitary matrix Q1 on entry and
103*>                 the product Q1*Q is returned.
104*> \endverbatim
105*>
106*> \param[in] COMPZ
107*> \verbatim
108*>          COMPZ is CHARACTER*1
109*>          = 'N': Right Schur vectors (Z) are not computed;
110*>          = 'I': Q is initialized to the unit matrix and the matrix Z
111*>                 of right Schur vectors of (H,T) is returned;
112*>          = 'V': Z must contain a unitary matrix Z1 on entry and
113*>                 the product Z1*Z is returned.
114*> \endverbatim
115*>
116*> \param[in] N
117*> \verbatim
118*>          N is INTEGER
119*>          The order of the matrices H, T, Q, and Z.  N >= 0.
120*> \endverbatim
121*>
122*> \param[in] ILO
123*> \verbatim
124*>          ILO is INTEGER
125*> \endverbatim
126*>
127*> \param[in] IHI
128*> \verbatim
129*>          IHI is INTEGER
130*>          ILO and IHI mark the rows and columns of H which are in
131*>          Hessenberg form.  It is assumed that A is already upper
132*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
133*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
134*> \endverbatim
135*>
136*> \param[in,out] H
137*> \verbatim
138*>          H is COMPLEX*16 array, dimension (LDH, N)
139*>          On entry, the N-by-N upper Hessenberg matrix H.
140*>          On exit, if JOB = 'S', H contains the upper triangular
141*>          matrix S from the generalized Schur factorization.
142*>          If JOB = 'E', the diagonal of H matches that of S, but
143*>          the rest of H is unspecified.
144*> \endverbatim
145*>
146*> \param[in] LDH
147*> \verbatim
148*>          LDH is INTEGER
149*>          The leading dimension of the array H.  LDH >= max( 1, N ).
150*> \endverbatim
151*>
152*> \param[in,out] T
153*> \verbatim
154*>          T is COMPLEX*16 array, dimension (LDT, N)
155*>          On entry, the N-by-N upper triangular matrix T.
156*>          On exit, if JOB = 'S', T contains the upper triangular
157*>          matrix P from the generalized Schur factorization.
158*>          If JOB = 'E', the diagonal of T matches that of P, but
159*>          the rest of T is unspecified.
160*> \endverbatim
161*>
162*> \param[in] LDT
163*> \verbatim
164*>          LDT is INTEGER
165*>          The leading dimension of the array T.  LDT >= max( 1, N ).
166*> \endverbatim
167*>
168*> \param[out] ALPHA
169*> \verbatim
170*>          ALPHA is COMPLEX*16 array, dimension (N)
171*>          The complex scalars alpha that define the eigenvalues of
172*>          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur
173*>          factorization.
174*> \endverbatim
175*>
176*> \param[out] BETA
177*> \verbatim
178*>          BETA is COMPLEX*16 array, dimension (N)
179*>          The real non-negative scalars beta that define the
180*>          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized
181*>          Schur factorization.
182*>
183*>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
184*>          represent the j-th eigenvalue of the matrix pair (A,B), in
185*>          one of the forms lambda = alpha/beta or mu = beta/alpha.
186*>          Since either lambda or mu may overflow, they should not,
187*>          in general, be computed.
188*> \endverbatim
189*>
190*> \param[in,out] Q
191*> \verbatim
192*>          Q is COMPLEX*16 array, dimension (LDQ, N)
193*>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in the
194*>          reduction of (A,B) to generalized Hessenberg form.
195*>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
196*>          vectors of (H,T), and if COMPQ = 'V', the unitary matrix of
197*>          left Schur vectors of (A,B).
198*>          Not referenced if COMPQ = 'N'.
199*> \endverbatim
200*>
201*> \param[in] LDQ
202*> \verbatim
203*>          LDQ is INTEGER
204*>          The leading dimension of the array Q.  LDQ >= 1.
205*>          If COMPQ='V' or 'I', then LDQ >= N.
206*> \endverbatim
207*>
208*> \param[in,out] Z
209*> \verbatim
210*>          Z is COMPLEX*16 array, dimension (LDZ, N)
211*>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
212*>          reduction of (A,B) to generalized Hessenberg form.
213*>          On exit, if COMPZ = 'I', the unitary matrix of right Schur
214*>          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
215*>          right Schur vectors of (A,B).
216*>          Not referenced if COMPZ = 'N'.
217*> \endverbatim
218*>
219*> \param[in] LDZ
220*> \verbatim
221*>          LDZ is INTEGER
222*>          The leading dimension of the array Z.  LDZ >= 1.
223*>          If COMPZ='V' or 'I', then LDZ >= N.
224*> \endverbatim
225*>
226*> \param[out] WORK
227*> \verbatim
228*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
229*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
230*> \endverbatim
231*>
232*> \param[in] LWORK
233*> \verbatim
234*>          LWORK is INTEGER
235*>          The dimension of the array WORK.  LWORK >= max(1,N).
236*>
237*>          If LWORK = -1, then a workspace query is assumed; the routine
238*>          only calculates the optimal size of the WORK array, returns
239*>          this value as the first entry of the WORK array, and no error
240*>          message related to LWORK is issued by XERBLA.
241*> \endverbatim
242*>
243*> \param[out] RWORK
244*> \verbatim
245*>          RWORK is DOUBLE PRECISION array, dimension (N)
246*> \endverbatim
247*>
248*> \param[out] INFO
249*> \verbatim
250*>          INFO is INTEGER
251*>          = 0: successful exit
252*>          < 0: if INFO = -i, the i-th argument had an illegal value
253*>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
254*>                     in Schur form, but ALPHA(i) and BETA(i),
255*>                     i=INFO+1,...,N should be correct.
256*>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
257*>                     in Schur form, but ALPHA(i) and BETA(i),
258*>                     i=INFO-N+1,...,N should be correct.
259*> \endverbatim
260*
261*  Authors:
262*  ========
263*
264*> \author Univ. of Tennessee
265*> \author Univ. of California Berkeley
266*> \author Univ. of Colorado Denver
267*> \author NAG Ltd.
268*
269*> \ingroup complex16GEcomputational
270*
271*> \par Further Details:
272*  =====================
273*>
274*> \verbatim
275*>
276*>  We assume that complex ABS works as long as its value is less than
277*>  overflow.
278*> \endverbatim
279*>
280*  =====================================================================
281      SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
282     $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
283     $                   RWORK, INFO )
284*
285*  -- LAPACK computational routine --
286*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
287*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
288*
289*     .. Scalar Arguments ..
290      CHARACTER          COMPQ, COMPZ, JOB
291      INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
292*     ..
293*     .. Array Arguments ..
294      DOUBLE PRECISION   RWORK( * )
295      COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
296     $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
297     $                   Z( LDZ, * )
298*     ..
299*
300*  =====================================================================
301*
302*     .. Parameters ..
303      COMPLEX*16         CZERO, CONE
304      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
305     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
306      DOUBLE PRECISION   ZERO, ONE
307      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
308      DOUBLE PRECISION   HALF
309      PARAMETER          ( HALF = 0.5D+0 )
310*     ..
311*     .. Local Scalars ..
312      LOGICAL            ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY
313      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
314     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
315     $                   JR, MAXIT
316      DOUBLE PRECISION   ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,
317     $                   C, SAFMIN, TEMP, TEMP2, TEMPR, ULP
318      COMPLEX*16         ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,
319     $                   CTEMP3, ESHIFT, S, SHIFT, SIGNBC,
320     $                   U12, X, ABI12, Y
321*     ..
322*     .. External Functions ..
323      COMPLEX*16         ZLADIV
324      LOGICAL            LSAME
325      DOUBLE PRECISION   DLAMCH, ZLANHS
326      EXTERNAL           ZLADIV, LSAME, DLAMCH, ZLANHS
327*     ..
328*     .. External Subroutines ..
329      EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL
330*     ..
331*     .. Intrinsic Functions ..
332      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN,
333     $                   SQRT
334*     ..
335*     .. Statement Functions ..
336      DOUBLE PRECISION   ABS1
337*     ..
338*     .. Statement Function definitions ..
339      ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
340*     ..
341*     .. Executable Statements ..
342*
343*     Decode JOB, COMPQ, COMPZ
344*
345      IF( LSAME( JOB, 'E' ) ) THEN
346         ILSCHR = .FALSE.
347         ISCHUR = 1
348      ELSE IF( LSAME( JOB, 'S' ) ) THEN
349         ILSCHR = .TRUE.
350         ISCHUR = 2
351      ELSE
352         ILSCHR = .TRUE.
353         ISCHUR = 0
354      END IF
355*
356      IF( LSAME( COMPQ, 'N' ) ) THEN
357         ILQ = .FALSE.
358         ICOMPQ = 1
359      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
360         ILQ = .TRUE.
361         ICOMPQ = 2
362      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
363         ILQ = .TRUE.
364         ICOMPQ = 3
365      ELSE
366         ILQ = .TRUE.
367         ICOMPQ = 0
368      END IF
369*
370      IF( LSAME( COMPZ, 'N' ) ) THEN
371         ILZ = .FALSE.
372         ICOMPZ = 1
373      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
374         ILZ = .TRUE.
375         ICOMPZ = 2
376      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
377         ILZ = .TRUE.
378         ICOMPZ = 3
379      ELSE
380         ILZ = .TRUE.
381         ICOMPZ = 0
382      END IF
383*
384*     Check Argument Values
385*
386      INFO = 0
387      WORK( 1 ) = MAX( 1, N )
388      LQUERY = ( LWORK.EQ.-1 )
389      IF( ISCHUR.EQ.0 ) THEN
390         INFO = -1
391      ELSE IF( ICOMPQ.EQ.0 ) THEN
392         INFO = -2
393      ELSE IF( ICOMPZ.EQ.0 ) THEN
394         INFO = -3
395      ELSE IF( N.LT.0 ) THEN
396         INFO = -4
397      ELSE IF( ILO.LT.1 ) THEN
398         INFO = -5
399      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
400         INFO = -6
401      ELSE IF( LDH.LT.N ) THEN
402         INFO = -8
403      ELSE IF( LDT.LT.N ) THEN
404         INFO = -10
405      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
406         INFO = -14
407      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
408         INFO = -16
409      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
410         INFO = -18
411      END IF
412      IF( INFO.NE.0 ) THEN
413         CALL XERBLA( 'ZHGEQZ', -INFO )
414         RETURN
415      ELSE IF( LQUERY ) THEN
416         RETURN
417      END IF
418*
419*     Quick return if possible
420*
421*     WORK( 1 ) = CMPLX( 1 )
422      IF( N.LE.0 ) THEN
423         WORK( 1 ) = DCMPLX( 1 )
424         RETURN
425      END IF
426*
427*     Initialize Q and Z
428*
429      IF( ICOMPQ.EQ.3 )
430     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
431      IF( ICOMPZ.EQ.3 )
432     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
433*
434*     Machine Constants
435*
436      IN = IHI + 1 - ILO
437      SAFMIN = DLAMCH( 'S' )
438      ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
439      ANORM = ZLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK )
440      BNORM = ZLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK )
441      ATOL = MAX( SAFMIN, ULP*ANORM )
442      BTOL = MAX( SAFMIN, ULP*BNORM )
443      ASCALE = ONE / MAX( SAFMIN, ANORM )
444      BSCALE = ONE / MAX( SAFMIN, BNORM )
445*
446*
447*     Set Eigenvalues IHI+1:N
448*
449      DO 10 J = IHI + 1, N
450         ABSB = ABS( T( J, J ) )
451         IF( ABSB.GT.SAFMIN ) THEN
452            SIGNBC = DCONJG( T( J, J ) / ABSB )
453            T( J, J ) = ABSB
454            IF( ILSCHR ) THEN
455               CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
456               CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
457            ELSE
458               CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
459            END IF
460            IF( ILZ )
461     $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
462         ELSE
463            T( J, J ) = CZERO
464         END IF
465         ALPHA( J ) = H( J, J )
466         BETA( J ) = T( J, J )
467   10 CONTINUE
468*
469*     If IHI < ILO, skip QZ steps
470*
471      IF( IHI.LT.ILO )
472     $   GO TO 190
473*
474*     MAIN QZ ITERATION LOOP
475*
476*     Initialize dynamic indices
477*
478*     Eigenvalues ILAST+1:N have been found.
479*        Column operations modify rows IFRSTM:whatever
480*        Row operations modify columns whatever:ILASTM
481*
482*     If only eigenvalues are being computed, then
483*        IFRSTM is the row of the last splitting row above row ILAST;
484*        this is always at least ILO.
485*     IITER counts iterations since the last eigenvalue was found,
486*        to tell when to use an extraordinary shift.
487*     MAXIT is the maximum number of QZ sweeps allowed.
488*
489      ILAST = IHI
490      IF( ILSCHR ) THEN
491         IFRSTM = 1
492         ILASTM = N
493      ELSE
494         IFRSTM = ILO
495         ILASTM = IHI
496      END IF
497      IITER = 0
498      ESHIFT = CZERO
499      MAXIT = 30*( IHI-ILO+1 )
500*
501      DO 170 JITER = 1, MAXIT
502*
503*        Check for too many iterations.
504*
505         IF( JITER.GT.MAXIT )
506     $      GO TO 180
507*
508*        Split the matrix if possible.
509*
510*        Two tests:
511*           1: H(j,j-1)=0  or  j=ILO
512*           2: T(j,j)=0
513*
514*        Special case: j=ILAST
515*
516         IF( ILAST.EQ.ILO ) THEN
517            GO TO 60
518         ELSE
519            IF( ABS1( H( ILAST, ILAST-1 ) ).LE.MAX( SAFMIN, ULP*(
520     $         ABS1( H( ILAST, ILAST ) ) + ABS1( H( ILAST-1, ILAST-1 )
521     $         ) ) ) ) THEN
522               H( ILAST, ILAST-1 ) = CZERO
523               GO TO 60
524            END IF
525         END IF
526*
527         IF( ABS( T( ILAST, ILAST ) ).LE.MAX( SAFMIN, ULP*(
528     $         ABS( T( ILAST - 1, ILAST ) ) + ABS( T( ILAST-1, ILAST-1 )
529     $          ) ) ) ) THEN
530            T( ILAST, ILAST ) = CZERO
531            GO TO 50
532         END IF
533*
534*        General case: j<ILAST
535*
536         DO 40 J = ILAST - 1, ILO, -1
537*
538*           Test 1: for H(j,j-1)=0 or j=ILO
539*
540            IF( J.EQ.ILO ) THEN
541               ILAZRO = .TRUE.
542            ELSE
543               IF( ABS1( H( J, J-1 ) ).LE.MAX( SAFMIN, ULP*(
544     $            ABS1( H( J, J ) ) + ABS1( H( J-1, J-1 ) )
545     $            ) ) ) THEN
546                  H( J, J-1 ) = CZERO
547                  ILAZRO = .TRUE.
548               ELSE
549                  ILAZRO = .FALSE.
550               END IF
551            END IF
552*
553*           Test 2: for T(j,j)=0
554*
555            TEMP = ABS ( T( J, J + 1 ) )
556            IF ( J .GT. ILO )
557     $           TEMP = TEMP + ABS ( T( J - 1, J ) )
558            IF( ABS( T( J, J ) ).LT.MAX( SAFMIN,ULP*TEMP ) ) THEN
559               T( J, J ) = CZERO
560*
561*              Test 1a: Check for 2 consecutive small subdiagonals in A
562*
563               ILAZR2 = .FALSE.
564               IF( .NOT.ILAZRO ) THEN
565                  IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1,
566     $                J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) )
567     $                ILAZR2 = .TRUE.
568               END IF
569*
570*              If both tests pass (1 & 2), i.e., the leading diagonal
571*              element of B in the block is zero, split a 1x1 block off
572*              at the top. (I.e., at the J-th row/column) The leading
573*              diagonal element of the remainder can also be zero, so
574*              this may have to be done repeatedly.
575*
576               IF( ILAZRO .OR. ILAZR2 ) THEN
577                  DO 20 JCH = J, ILAST - 1
578                     CTEMP = H( JCH, JCH )
579                     CALL ZLARTG( CTEMP, H( JCH+1, JCH ), C, S,
580     $                            H( JCH, JCH ) )
581                     H( JCH+1, JCH ) = CZERO
582                     CALL ZROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
583     $                          H( JCH+1, JCH+1 ), LDH, C, S )
584                     CALL ZROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
585     $                          T( JCH+1, JCH+1 ), LDT, C, S )
586                     IF( ILQ )
587     $                  CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
588     $                             C, DCONJG( S ) )
589                     IF( ILAZR2 )
590     $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
591                     ILAZR2 = .FALSE.
592                     IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
593                        IF( JCH+1.GE.ILAST ) THEN
594                           GO TO 60
595                        ELSE
596                           IFIRST = JCH + 1
597                           GO TO 70
598                        END IF
599                     END IF
600                     T( JCH+1, JCH+1 ) = CZERO
601   20             CONTINUE
602                  GO TO 50
603               ELSE
604*
605*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
606*                 Then process as in the case T(ILAST,ILAST)=0
607*
608                  DO 30 JCH = J, ILAST - 1
609                     CTEMP = T( JCH, JCH+1 )
610                     CALL ZLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S,
611     $                            T( JCH, JCH+1 ) )
612                     T( JCH+1, JCH+1 ) = CZERO
613                     IF( JCH.LT.ILASTM-1 )
614     $                  CALL ZROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
615     $                             T( JCH+1, JCH+2 ), LDT, C, S )
616                     CALL ZROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
617     $                          H( JCH+1, JCH-1 ), LDH, C, S )
618                     IF( ILQ )
619     $                  CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
620     $                             C, DCONJG( S ) )
621                     CTEMP = H( JCH+1, JCH )
622                     CALL ZLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S,
623     $                            H( JCH+1, JCH ) )
624                     H( JCH+1, JCH-1 ) = CZERO
625                     CALL ZROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
626     $                          H( IFRSTM, JCH-1 ), 1, C, S )
627                     CALL ZROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
628     $                          T( IFRSTM, JCH-1 ), 1, C, S )
629                     IF( ILZ )
630     $                  CALL ZROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
631     $                             C, S )
632   30             CONTINUE
633                  GO TO 50
634               END IF
635            ELSE IF( ILAZRO ) THEN
636*
637*              Only test 1 passed -- work on J:ILAST
638*
639               IFIRST = J
640               GO TO 70
641            END IF
642*
643*           Neither test passed -- try next J
644*
645   40    CONTINUE
646*
647*        (Drop-through is "impossible")
648*
649         INFO = 2*N + 1
650         GO TO 210
651*
652*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
653*        1x1 block.
654*
655   50    CONTINUE
656         CTEMP = H( ILAST, ILAST )
657         CALL ZLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S,
658     $                H( ILAST, ILAST ) )
659         H( ILAST, ILAST-1 ) = CZERO
660         CALL ZROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
661     $              H( IFRSTM, ILAST-1 ), 1, C, S )
662         CALL ZROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
663     $              T( IFRSTM, ILAST-1 ), 1, C, S )
664         IF( ILZ )
665     $      CALL ZROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
666*
667*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA
668*
669   60    CONTINUE
670         ABSB = ABS( T( ILAST, ILAST ) )
671         IF( ABSB.GT.SAFMIN ) THEN
672            SIGNBC = DCONJG( T( ILAST, ILAST ) / ABSB )
673            T( ILAST, ILAST ) = ABSB
674            IF( ILSCHR ) THEN
675               CALL ZSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 )
676               CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
677     $                     1 )
678            ELSE
679               CALL ZSCAL( 1, SIGNBC, H( ILAST, ILAST ), 1 )
680            END IF
681            IF( ILZ )
682     $         CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
683         ELSE
684            T( ILAST, ILAST ) = CZERO
685         END IF
686         ALPHA( ILAST ) = H( ILAST, ILAST )
687         BETA( ILAST ) = T( ILAST, ILAST )
688*
689*        Go to next block -- exit if finished.
690*
691         ILAST = ILAST - 1
692         IF( ILAST.LT.ILO )
693     $      GO TO 190
694*
695*        Reset counters
696*
697         IITER = 0
698         ESHIFT = CZERO
699         IF( .NOT.ILSCHR ) THEN
700            ILASTM = ILAST
701            IF( IFRSTM.GT.ILAST )
702     $         IFRSTM = ILO
703         END IF
704         GO TO 160
705*
706*        QZ step
707*
708*        This iteration only involves rows/columns IFIRST:ILAST.  We
709*        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
710*
711   70    CONTINUE
712         IITER = IITER + 1
713         IF( .NOT.ILSCHR ) THEN
714            IFRSTM = IFIRST
715         END IF
716*
717*        Compute the Shift.
718*
719*        At this point, IFIRST < ILAST, and the diagonal elements of
720*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
721*        magnitude)
722*
723         IF( ( IITER / 10 )*10.NE.IITER ) THEN
724*
725*           The Wilkinson shift (AEP p.512), i.e., the eigenvalue of
726*           the bottom-right 2x2 block of A inv(B) which is nearest to
727*           the bottom-right element.
728*
729*           We factor B as U*D, where U has unit diagonals, and
730*           compute (A*inv(D))*inv(U).
731*
732            U12 = ( BSCALE*T( ILAST-1, ILAST ) ) /
733     $            ( BSCALE*T( ILAST, ILAST ) )
734            AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
735     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
736            AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
737     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
738            AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
739     $             ( BSCALE*T( ILAST, ILAST ) )
740            AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
741     $             ( BSCALE*T( ILAST, ILAST ) )
742            ABI22 = AD22 - U12*AD21
743            ABI12 = AD12 - U12*AD11
744*
745            SHIFT = ABI22
746            CTEMP = SQRT( ABI12 )*SQRT( AD21 )
747            TEMP = ABS1( CTEMP )
748            IF( CTEMP.NE.ZERO ) THEN
749               X = HALF*( AD11-SHIFT )
750               TEMP2 = ABS1( X )
751               TEMP = MAX( TEMP, ABS1( X ) )
752               Y = TEMP*SQRT( ( X / TEMP )**2+( CTEMP / TEMP )**2 )
753               IF( TEMP2.GT.ZERO ) THEN
754                  IF( DBLE( X / TEMP2 )*DBLE( Y )+
755     $                DIMAG( X / TEMP2 )*DIMAG( Y ).LT.ZERO )Y = -Y
756               END IF
757               SHIFT = SHIFT - CTEMP*ZLADIV( CTEMP, ( X+Y ) )
758            END IF
759         ELSE
760*
761*           Exceptional shift.  Chosen for no particularly good reason.
762*
763            IF( ( IITER / 20 )*20.EQ.IITER .AND.
764     $         BSCALE*ABS1(T( ILAST, ILAST )).GT.SAFMIN ) THEN
765               ESHIFT = ESHIFT + ( ASCALE*H( ILAST,
766     $            ILAST ) )/( BSCALE*T( ILAST, ILAST ) )
767            ELSE
768               ESHIFT = ESHIFT + ( ASCALE*H( ILAST,
769     $            ILAST-1 ) )/( BSCALE*T( ILAST-1, ILAST-1 ) )
770            END IF
771            SHIFT = ESHIFT
772         END IF
773*
774*        Now check for two consecutive small subdiagonals.
775*
776         DO 80 J = ILAST - 1, IFIRST + 1, -1
777            ISTART = J
778            CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) )
779            TEMP = ABS1( CTEMP )
780            TEMP2 = ASCALE*ABS1( H( J+1, J ) )
781            TEMPR = MAX( TEMP, TEMP2 )
782            IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
783               TEMP = TEMP / TEMPR
784               TEMP2 = TEMP2 / TEMPR
785            END IF
786            IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL )
787     $         GO TO 90
788   80    CONTINUE
789*
790         ISTART = IFIRST
791         CTEMP = ASCALE*H( IFIRST, IFIRST ) -
792     $           SHIFT*( BSCALE*T( IFIRST, IFIRST ) )
793   90    CONTINUE
794*
795*        Do an implicit-shift QZ sweep.
796*
797*        Initial Q
798*
799         CTEMP2 = ASCALE*H( ISTART+1, ISTART )
800         CALL ZLARTG( CTEMP, CTEMP2, C, S, CTEMP3 )
801*
802*        Sweep
803*
804         DO 150 J = ISTART, ILAST - 1
805            IF( J.GT.ISTART ) THEN
806               CTEMP = H( J, J-1 )
807               CALL ZLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
808               H( J+1, J-1 ) = CZERO
809            END IF
810*
811            DO 100 JC = J, ILASTM
812               CTEMP = C*H( J, JC ) + S*H( J+1, JC )
813               H( J+1, JC ) = -DCONJG( S )*H( J, JC ) + C*H( J+1, JC )
814               H( J, JC ) = CTEMP
815               CTEMP2 = C*T( J, JC ) + S*T( J+1, JC )
816               T( J+1, JC ) = -DCONJG( S )*T( J, JC ) + C*T( J+1, JC )
817               T( J, JC ) = CTEMP2
818  100       CONTINUE
819            IF( ILQ ) THEN
820               DO 110 JR = 1, N
821                  CTEMP = C*Q( JR, J ) + DCONJG( S )*Q( JR, J+1 )
822                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
823                  Q( JR, J ) = CTEMP
824  110          CONTINUE
825            END IF
826*
827            CTEMP = T( J+1, J+1 )
828            CALL ZLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
829            T( J+1, J ) = CZERO
830*
831            DO 120 JR = IFRSTM, MIN( J+2, ILAST )
832               CTEMP = C*H( JR, J+1 ) + S*H( JR, J )
833               H( JR, J ) = -DCONJG( S )*H( JR, J+1 ) + C*H( JR, J )
834               H( JR, J+1 ) = CTEMP
835  120       CONTINUE
836            DO 130 JR = IFRSTM, J
837               CTEMP = C*T( JR, J+1 ) + S*T( JR, J )
838               T( JR, J ) = -DCONJG( S )*T( JR, J+1 ) + C*T( JR, J )
839               T( JR, J+1 ) = CTEMP
840  130       CONTINUE
841            IF( ILZ ) THEN
842               DO 140 JR = 1, N
843                  CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
844                  Z( JR, J ) = -DCONJG( S )*Z( JR, J+1 ) + C*Z( JR, J )
845                  Z( JR, J+1 ) = CTEMP
846  140          CONTINUE
847            END IF
848  150    CONTINUE
849*
850  160    CONTINUE
851*
852  170 CONTINUE
853*
854*     Drop-through = non-convergence
855*
856  180 CONTINUE
857      INFO = ILAST
858      GO TO 210
859*
860*     Successful completion of all QZ steps
861*
862  190 CONTINUE
863*
864*     Set Eigenvalues 1:ILO-1
865*
866      DO 200 J = 1, ILO - 1
867         ABSB = ABS( T( J, J ) )
868         IF( ABSB.GT.SAFMIN ) THEN
869            SIGNBC = DCONJG( T( J, J ) / ABSB )
870            T( J, J ) = ABSB
871            IF( ILSCHR ) THEN
872               CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
873               CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
874            ELSE
875               CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
876            END IF
877            IF( ILZ )
878     $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
879         ELSE
880            T( J, J ) = CZERO
881         END IF
882         ALPHA( J ) = H( J, J )
883         BETA( J ) = T( J, J )
884  200 CONTINUE
885*
886*     Normal Termination
887*
888      INFO = 0
889*
890*     Exit (other than argument error) -- return optimal workspace size
891*
892  210 CONTINUE
893      WORK( 1 ) = DCMPLX( N )
894      RETURN
895*
896*     End of ZHGEQZ
897*
898      END
899