1*> \brief \b ZHPTRD
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHPTRD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, N
26*       ..
27*       .. Array Arguments ..
28*       DOUBLE PRECISION   D( * ), E( * )
29*       COMPLEX*16         AP( * ), TAU( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
39*> real symmetric tridiagonal form T by a unitary similarity
40*> transformation: Q**H * A * Q = T.
41*> \endverbatim
42*
43*  Arguments:
44*  ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*>          UPLO is CHARACTER*1
49*>          = 'U':  Upper triangle of A is stored;
50*>          = 'L':  Lower triangle of A is stored.
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*>          N is INTEGER
56*>          The order of the matrix A.  N >= 0.
57*> \endverbatim
58*>
59*> \param[in,out] AP
60*> \verbatim
61*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
62*>          On entry, the upper or lower triangle of the Hermitian matrix
63*>          A, packed columnwise in a linear array.  The j-th column of A
64*>          is stored in the array AP as follows:
65*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
66*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
67*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
68*>          of A are overwritten by the corresponding elements of the
69*>          tridiagonal matrix T, and the elements above the first
70*>          superdiagonal, with the array TAU, represent the unitary
71*>          matrix Q as a product of elementary reflectors; if UPLO
72*>          = 'L', the diagonal and first subdiagonal of A are over-
73*>          written by the corresponding elements of the tridiagonal
74*>          matrix T, and the elements below the first subdiagonal, with
75*>          the array TAU, represent the unitary matrix Q as a product
76*>          of elementary reflectors. See Further Details.
77*> \endverbatim
78*>
79*> \param[out] D
80*> \verbatim
81*>          D is DOUBLE PRECISION array, dimension (N)
82*>          The diagonal elements of the tridiagonal matrix T:
83*>          D(i) = A(i,i).
84*> \endverbatim
85*>
86*> \param[out] E
87*> \verbatim
88*>          E is DOUBLE PRECISION array, dimension (N-1)
89*>          The off-diagonal elements of the tridiagonal matrix T:
90*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
91*> \endverbatim
92*>
93*> \param[out] TAU
94*> \verbatim
95*>          TAU is COMPLEX*16 array, dimension (N-1)
96*>          The scalar factors of the elementary reflectors (see Further
97*>          Details).
98*> \endverbatim
99*>
100*> \param[out] INFO
101*> \verbatim
102*>          INFO is INTEGER
103*>          = 0:  successful exit
104*>          < 0:  if INFO = -i, the i-th argument had an illegal value
105*> \endverbatim
106*
107*  Authors:
108*  ========
109*
110*> \author Univ. of Tennessee
111*> \author Univ. of California Berkeley
112*> \author Univ. of Colorado Denver
113*> \author NAG Ltd.
114*
115*> \ingroup complex16OTHERcomputational
116*
117*> \par Further Details:
118*  =====================
119*>
120*> \verbatim
121*>
122*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
123*>  reflectors
124*>
125*>     Q = H(n-1) . . . H(2) H(1).
126*>
127*>  Each H(i) has the form
128*>
129*>     H(i) = I - tau * v * v**H
130*>
131*>  where tau is a complex scalar, and v is a complex vector with
132*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
133*>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
134*>
135*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
136*>  reflectors
137*>
138*>     Q = H(1) H(2) . . . H(n-1).
139*>
140*>  Each H(i) has the form
141*>
142*>     H(i) = I - tau * v * v**H
143*>
144*>  where tau is a complex scalar, and v is a complex vector with
145*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
146*>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
147*> \endverbatim
148*>
149*  =====================================================================
150      SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
151*
152*  -- LAPACK computational routine --
153*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
154*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
155*
156*     .. Scalar Arguments ..
157      CHARACTER          UPLO
158      INTEGER            INFO, N
159*     ..
160*     .. Array Arguments ..
161      DOUBLE PRECISION   D( * ), E( * )
162      COMPLEX*16         AP( * ), TAU( * )
163*     ..
164*
165*  =====================================================================
166*
167*     .. Parameters ..
168      COMPLEX*16         ONE, ZERO, HALF
169      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
170     $                   ZERO = ( 0.0D+0, 0.0D+0 ),
171     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
172*     ..
173*     .. Local Scalars ..
174      LOGICAL            UPPER
175      INTEGER            I, I1, I1I1, II
176      COMPLEX*16         ALPHA, TAUI
177*     ..
178*     .. External Subroutines ..
179      EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
180*     ..
181*     .. External Functions ..
182      LOGICAL            LSAME
183      COMPLEX*16         ZDOTC
184      EXTERNAL           LSAME, ZDOTC
185*     ..
186*     .. Intrinsic Functions ..
187      INTRINSIC          DBLE
188*     ..
189*     .. Executable Statements ..
190*
191*     Test the input parameters
192*
193      INFO = 0
194      UPPER = LSAME( UPLO, 'U' )
195      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
196         INFO = -1
197      ELSE IF( N.LT.0 ) THEN
198         INFO = -2
199      END IF
200      IF( INFO.NE.0 ) THEN
201         CALL XERBLA( 'ZHPTRD', -INFO )
202         RETURN
203      END IF
204*
205*     Quick return if possible
206*
207      IF( N.LE.0 )
208     $   RETURN
209*
210      IF( UPPER ) THEN
211*
212*        Reduce the upper triangle of A.
213*        I1 is the index in AP of A(1,I+1).
214*
215         I1 = N*( N-1 ) / 2 + 1
216         AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
217         DO 10 I = N - 1, 1, -1
218*
219*           Generate elementary reflector H(i) = I - tau * v * v**H
220*           to annihilate A(1:i-1,i+1)
221*
222            ALPHA = AP( I1+I-1 )
223            CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
224            E( I ) = DBLE( ALPHA )
225*
226            IF( TAUI.NE.ZERO ) THEN
227*
228*              Apply H(i) from both sides to A(1:i,1:i)
229*
230               AP( I1+I-1 ) = ONE
231*
232*              Compute  y := tau * A * v  storing y in TAU(1:i)
233*
234               CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
235     $                     1 )
236*
237*              Compute  w := y - 1/2 * tau * (y**H *v) * v
238*
239               ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
240               CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
241*
242*              Apply the transformation as a rank-2 update:
243*                 A := A - v * w**H - w * v**H
244*
245               CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
246*
247            END IF
248            AP( I1+I-1 ) = E( I )
249            D( I+1 ) = DBLE( AP( I1+I ) )
250            TAU( I ) = TAUI
251            I1 = I1 - I
252   10    CONTINUE
253         D( 1 ) = DBLE( AP( 1 ) )
254      ELSE
255*
256*        Reduce the lower triangle of A. II is the index in AP of
257*        A(i,i) and I1I1 is the index of A(i+1,i+1).
258*
259         II = 1
260         AP( 1 ) = DBLE( AP( 1 ) )
261         DO 20 I = 1, N - 1
262            I1I1 = II + N - I + 1
263*
264*           Generate elementary reflector H(i) = I - tau * v * v**H
265*           to annihilate A(i+2:n,i)
266*
267            ALPHA = AP( II+1 )
268            CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
269            E( I ) = DBLE( ALPHA )
270*
271            IF( TAUI.NE.ZERO ) THEN
272*
273*              Apply H(i) from both sides to A(i+1:n,i+1:n)
274*
275               AP( II+1 ) = ONE
276*
277*              Compute  y := tau * A * v  storing y in TAU(i:n-1)
278*
279               CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
280     $                     ZERO, TAU( I ), 1 )
281*
282*              Compute  w := y - 1/2 * tau * (y**H *v) * v
283*
284               ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
285     $                 1 )
286               CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
287*
288*              Apply the transformation as a rank-2 update:
289*                 A := A - v * w**H - w * v**H
290*
291               CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
292     $                     AP( I1I1 ) )
293*
294            END IF
295            AP( II+1 ) = E( I )
296            D( I ) = DBLE( AP( II ) )
297            TAU( I ) = TAUI
298            II = I1I1
299   20    CONTINUE
300         D( N ) = DBLE( AP( II ) )
301      END IF
302*
303      RETURN
304*
305*     End of ZHPTRD
306*
307      END
308