1*> \brief \b ZLAQZ0
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQZ0 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqz0.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqz0.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqz0.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*      SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
22*     $    LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC,
23*     $    INFO )
24*      IMPLICIT NONE
25*
26*      Arguments
27*      CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
28*      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
29*     $    REC
30*      INTEGER, INTENT( OUT ) :: INFO
31*      COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
32*     $    * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
33*      DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
34*       ..
35*
36*
37*> \par Purpose:
38*  =============
39*>
40*> \verbatim
41*>
42*> ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
43*> where H is an upper Hessenberg matrix and T is upper triangular,
44*> using the double-shift QZ method.
45*> Matrix pairs of this type are produced by the reduction to
46*> generalized upper Hessenberg form of a real matrix pair (A,B):
47*>
48*>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
49*>
50*> as computed by ZGGHRD.
51*>
52*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
53*> also reduced to generalized Schur form,
54*>
55*>    H = Q*S*Z**H,  T = Q*P*Z**H,
56*>
57*> where Q and Z are unitary matrices, P and S are an upper triangular
58*> matrices.
59*>
60*> Optionally, the unitary matrix Q from the generalized Schur
61*> factorization may be postmultiplied into an input matrix Q1, and the
62*> unitary matrix Z may be postmultiplied into an input matrix Z1.
63*> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
64*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
65*> output matrices Q1*Q and Z1*Z are the unitary factors from the
66*> generalized Schur factorization of (A,B):
67*>
68*>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
69*>
70*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
71*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
72*> complex and beta real.
73*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
74*> generalized nonsymmetric eigenvalue problem (GNEP)
75*>    A*x = lambda*B*x
76*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
77*> alternate form of the GNEP
78*>    mu*A*y = B*y.
79*> Eigenvalues can be read directly from the generalized Schur
80*> form:
81*>   alpha = S(i,i), beta = P(i,i).
82*>
83*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
84*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
85*>      pp. 241--256.
86*>
87*> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
88*>      Algorithm with Aggressive Early Deflation", SIAM J. Numer.
89*>      Anal., 29(2006), pp. 199--227.
90*>
91*> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
92*>      multipole rational QZ method with agressive early deflation"
93*> \endverbatim
94*
95*  Arguments:
96*  ==========
97*
98*> \param[in] WANTS
99*> \verbatim
100*>          WANTS is CHARACTER*1
101*>          = 'E': Compute eigenvalues only;
102*>          = 'S': Compute eigenvalues and the Schur form.
103*> \endverbatim
104*>
105*> \param[in] WANTQ
106*> \verbatim
107*>          WANTQ is CHARACTER*1
108*>          = 'N': Left Schur vectors (Q) are not computed;
109*>          = 'I': Q is initialized to the unit matrix and the matrix Q
110*>                 of left Schur vectors of (A,B) is returned;
111*>          = 'V': Q must contain an unitary matrix Q1 on entry and
112*>                 the product Q1*Q is returned.
113*> \endverbatim
114*>
115*> \param[in] WANTZ
116*> \verbatim
117*>          WANTZ is CHARACTER*1
118*>          = 'N': Right Schur vectors (Z) are not computed;
119*>          = 'I': Z is initialized to the unit matrix and the matrix Z
120*>                 of right Schur vectors of (A,B) is returned;
121*>          = 'V': Z must contain an unitary matrix Z1 on entry and
122*>                 the product Z1*Z is returned.
123*> \endverbatim
124*>
125*> \param[in] N
126*> \verbatim
127*>          N is INTEGER
128*>          The order of the matrices A, B, Q, and Z.  N >= 0.
129*> \endverbatim
130*>
131*> \param[in] ILO
132*> \verbatim
133*>          ILO is INTEGER
134*> \endverbatim
135*>
136*> \param[in] IHI
137*> \verbatim
138*>          IHI is INTEGER
139*>          ILO and IHI mark the rows and columns of A which are in
140*>          Hessenberg form.  It is assumed that A is already upper
141*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
142*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
143*> \endverbatim
144*>
145*> \param[in,out] A
146*> \verbatim
147*>          A is COMPLEX*16 array, dimension (LDA, N)
148*>          On entry, the N-by-N upper Hessenberg matrix A.
149*>          On exit, if JOB = 'S', A contains the upper triangular
150*>          matrix S from the generalized Schur factorization.
151*>          If JOB = 'E', the diagonal blocks of A match those of S, but
152*>          the rest of A is unspecified.
153*> \endverbatim
154*>
155*> \param[in] LDA
156*> \verbatim
157*>          LDA is INTEGER
158*>          The leading dimension of the array A.  LDA >= max( 1, N ).
159*> \endverbatim
160*>
161*> \param[in,out] B
162*> \verbatim
163*>          B is COMPLEX*16 array, dimension (LDB, N)
164*>          On entry, the N-by-N upper triangular matrix B.
165*>          On exit, if JOB = 'S', B contains the upper triangular
166*>          matrix P from the generalized Schur factorization;
167*>          If JOB = 'E', the diagonal blocks of B match those of P, but
168*>          the rest of B is unspecified.
169*> \endverbatim
170*>
171*> \param[in] LDB
172*> \verbatim
173*>          LDB is INTEGER
174*>          The leading dimension of the array B.  LDB >= max( 1, N ).
175*> \endverbatim
176*>
177*> \param[out] ALPHA
178*> \verbatim
179*>          ALPHA is COMPLEX*16 array, dimension (N)
180*>          Each scalar alpha defining an eigenvalue
181*>          of GNEP.
182*> \endverbatim
183*>
184*> \param[out] BETA
185*> \verbatim
186*>          BETA is COMPLEX*16 array, dimension (N)
187*>          The scalars beta that define the eigenvalues of GNEP.
188*>          Together, the quantities alpha = ALPHA(j) and
189*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
190*>          pair (A,B), in one of the forms lambda = alpha/beta or
191*>          mu = beta/alpha.  Since either lambda or mu may overflow,
192*>          they should not, in general, be computed.
193*> \endverbatim
194*>
195*> \param[in,out] Q
196*> \verbatim
197*>          Q is COMPLEX*16 array, dimension (LDQ, N)
198*>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in
199*>          the reduction of (A,B) to generalized Hessenberg form.
200*>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
201*>          vectors of (A,B), and if COMPQ = 'V', the unitary matrix
202*>          of left Schur vectors of (A,B).
203*>          Not referenced if COMPQ = 'N'.
204*> \endverbatim
205*>
206*> \param[in] LDQ
207*> \verbatim
208*>          LDQ is INTEGER
209*>          The leading dimension of the array Q.  LDQ >= 1.
210*>          If COMPQ='V' or 'I', then LDQ >= N.
211*> \endverbatim
212*>
213*> \param[in,out] Z
214*> \verbatim
215*>          Z is COMPLEX*16 array, dimension (LDZ, N)
216*>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in
217*>          the reduction of (A,B) to generalized Hessenberg form.
218*>          On exit, if COMPZ = 'I', the unitary matrix of
219*>          right Schur vectors of (H,T), and if COMPZ = 'V', the
220*>          unitary matrix of right Schur vectors of (A,B).
221*>          Not referenced if COMPZ = 'N'.
222*> \endverbatim
223*>
224*> \param[in] LDZ
225*> \verbatim
226*>          LDZ is INTEGER
227*>          The leading dimension of the array Z.  LDZ >= 1.
228*>          If COMPZ='V' or 'I', then LDZ >= N.
229*> \endverbatim
230*>
231*> \param[out] WORK
232*> \verbatim
233*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
234*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
235*> \endverbatim
236*>
237*> \param[out] RWORK
238*> \verbatim
239*>          RWORK is DOUBLE PRECISION array, dimension (N)
240*> \endverbatim
241*>
242*> \param[in] LWORK
243*> \verbatim
244*>          LWORK is INTEGER
245*>          The dimension of the array WORK.  LWORK >= max(1,N).
246*>
247*>          If LWORK = -1, then a workspace query is assumed; the routine
248*>          only calculates the optimal size of the WORK array, returns
249*>          this value as the first entry of the WORK array, and no error
250*>          message related to LWORK is issued by XERBLA.
251*> \endverbatim
252*>
253*> \param[in] REC
254*> \verbatim
255*>          REC is INTEGER
256*>             REC indicates the current recursion level. Should be set
257*>             to 0 on first call.
258*> \endverbatim
259*>
260*> \param[out] INFO
261*> \verbatim
262*>          INFO is INTEGER
263*>          = 0: successful exit
264*>          < 0: if INFO = -i, the i-th argument had an illegal value
265*>          = 1,...,N: the QZ iteration did not converge.  (A,B) is not
266*>                     in Schur form, but ALPHA(i) and
267*>                     BETA(i), i=INFO+1,...,N should be correct.
268*> \endverbatim
269*
270*  Authors:
271*  ========
272*
273*> \author Thijs Steel, KU Leuven
274*
275*> \date May 2020
276*
277*> \ingroup complex16GEcomputational
278*>
279*  =====================================================================
280      RECURSIVE SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
281     $                             LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z,
282     $                             LDZ, WORK, LWORK, RWORK, REC,
283     $                             INFO )
284      IMPLICIT NONE
285
286*     Arguments
287      CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
288      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
289     $         REC
290      INTEGER, INTENT( OUT ) :: INFO
291      COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
292     $   * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
293      DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
294
295*     Parameters
296      COMPLEX*16         CZERO, CONE
297      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0,
298     $                     0.0D+0 ) )
299      DOUBLE PRECISION :: ZERO, ONE, HALF
300      PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
301
302*     Local scalars
303      DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR
304      COMPLEX*16 :: ESHIFT, S1, TEMP
305      INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
306     $           NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
307     $           NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
308     $           ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
309     $           NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST
310      LOGICAL :: ILSCHUR, ILQ, ILZ
311      CHARACTER :: JBCMPZ*3
312
313*     External Functions
314      EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET, DLABAD,
315     $            ZLARTG, ZROT
316      DOUBLE PRECISION, EXTERNAL :: DLAMCH
317      LOGICAL, EXTERNAL :: LSAME
318      INTEGER, EXTERNAL :: ILAENV
319
320*
321*     Decode wantS,wantQ,wantZ
322*
323      IF( LSAME( WANTS, 'E' ) ) THEN
324         ILSCHUR = .FALSE.
325         IWANTS = 1
326      ELSE IF( LSAME( WANTS, 'S' ) ) THEN
327         ILSCHUR = .TRUE.
328         IWANTS = 2
329      ELSE
330         IWANTS = 0
331      END IF
332
333      IF( LSAME( WANTQ, 'N' ) ) THEN
334         ILQ = .FALSE.
335         IWANTQ = 1
336      ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
337         ILQ = .TRUE.
338         IWANTQ = 2
339      ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
340         ILQ = .TRUE.
341         IWANTQ = 3
342      ELSE
343         IWANTQ = 0
344      END IF
345
346      IF( LSAME( WANTZ, 'N' ) ) THEN
347         ILZ = .FALSE.
348         IWANTZ = 1
349      ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
350         ILZ = .TRUE.
351         IWANTZ = 2
352      ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
353         ILZ = .TRUE.
354         IWANTZ = 3
355      ELSE
356         IWANTZ = 0
357      END IF
358*
359*     Check Argument Values
360*
361      INFO = 0
362      IF( IWANTS.EQ.0 ) THEN
363         INFO = -1
364      ELSE IF( IWANTQ.EQ.0 ) THEN
365         INFO = -2
366      ELSE IF( IWANTZ.EQ.0 ) THEN
367         INFO = -3
368      ELSE IF( N.LT.0 ) THEN
369         INFO = -4
370      ELSE IF( ILO.LT.1 ) THEN
371         INFO = -5
372      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
373         INFO = -6
374      ELSE IF( LDA.LT.N ) THEN
375         INFO = -8
376      ELSE IF( LDB.LT.N ) THEN
377         INFO = -10
378      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
379         INFO = -15
380      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
381         INFO = -17
382      END IF
383      IF( INFO.NE.0 ) THEN
384         CALL XERBLA( 'ZLAQZ0', -INFO )
385         RETURN
386      END IF
387
388*
389*     Quick return if possible
390*
391      IF( N.LE.0 ) THEN
392         WORK( 1 ) = DBLE( 1 )
393         RETURN
394      END IF
395
396*
397*     Get the parameters
398*
399      JBCMPZ( 1:1 ) = WANTS
400      JBCMPZ( 2:2 ) = WANTQ
401      JBCMPZ( 3:3 ) = WANTZ
402
403      NMIN = ILAENV( 12, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
404
405      NWR = ILAENV( 13, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
406      NWR = MAX( 2, NWR )
407      NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
408
409      NIBBLE = ILAENV( 14, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
410
411      NSR = ILAENV( 15, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
412      NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
413      NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
414
415      RCOST = ILAENV( 17, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
416      ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) )
417      ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
418      NBR = NSR+ITEMP1
419
420      IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
421         CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
422     $                ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
423     $                INFO )
424         RETURN
425      END IF
426
427*
428*     Find out required workspace
429*
430
431*     Workspace query to ZLAQZ2
432      NW = MAX( NWR, NMIN )
433      CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB,
434     $             Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA,
435     $             BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC,
436     $             AED_INFO )
437      ITEMP1 = INT( WORK( 1 ) )
438*     Workspace query to ZLAQZ3
439      CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA,
440     $             BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR,
441     $             WORK, NBR, WORK, -1, SWEEP_INFO )
442      ITEMP2 = INT( WORK( 1 ) )
443
444      LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
445      IF ( LWORK .EQ.-1 ) THEN
446         WORK( 1 ) = DBLE( LWORKREQ )
447         RETURN
448      ELSE IF ( LWORK .LT. LWORKREQ ) THEN
449         INFO = -19
450      END IF
451      IF( INFO.NE.0 ) THEN
452         CALL XERBLA( 'ZLAQZ0', INFO )
453         RETURN
454      END IF
455*
456*     Initialize Q and Z
457*
458      IF( IWANTQ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Q,
459     $    LDQ )
460      IF( IWANTZ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Z,
461     $    LDZ )
462
463*     Get machine constants
464      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
465      SAFMAX = ONE/SAFMIN
466      CALL DLABAD( SAFMIN, SAFMAX )
467      ULP = DLAMCH( 'PRECISION' )
468      SMLNUM = SAFMIN*( DBLE( N )/ULP )
469
470      ISTART = ILO
471      ISTOP = IHI
472      MAXIT = 30*( IHI-ILO+1 )
473      LD = 0
474
475      DO IITER = 1, MAXIT
476         IF( IITER .GE. MAXIT ) THEN
477            INFO = ISTOP+1
478            GOTO 80
479         END IF
480         IF ( ISTART+1 .GE. ISTOP ) THEN
481            ISTOP = ISTART
482            EXIT
483         END IF
484
485*        Check deflations at the end
486         IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
487     $      ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
488     $      ISTOP-1 ) ) ) ) ) THEN
489            A( ISTOP, ISTOP-1 ) = CZERO
490            ISTOP = ISTOP-1
491            LD = 0
492            ESHIFT = CZERO
493         END IF
494*        Check deflations at the start
495         IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
496     $      ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
497     $      ISTART+1 ) ) ) ) ) THEN
498            A( ISTART+1, ISTART ) = CZERO
499            ISTART = ISTART+1
500            LD = 0
501            ESHIFT = CZERO
502         END IF
503
504         IF ( ISTART+1 .GE. ISTOP ) THEN
505            EXIT
506         END IF
507
508*        Check interior deflations
509         ISTART2 = ISTART
510         DO K = ISTOP, ISTART+1, -1
511            IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
512     $         K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
513               A( K, K-1 ) = CZERO
514               ISTART2 = K
515               EXIT
516            END IF
517         END DO
518
519*        Get range to apply rotations to
520         IF ( ILSCHUR ) THEN
521            ISTARTM = 1
522            ISTOPM = N
523         ELSE
524            ISTARTM = ISTART2
525            ISTOPM = ISTOP
526         END IF
527
528*        Check infinite eigenvalues, this is done without blocking so might
529*        slow down the method when many infinite eigenvalues are present
530         K = ISTOP
531         DO WHILE ( K.GE.ISTART2 )
532            TEMPR = ZERO
533            IF( K .LT. ISTOP ) THEN
534               TEMPR = TEMPR+ABS( B( K, K+1 ) )
535            END IF
536            IF( K .GT. ISTART2 ) THEN
537               TEMPR = TEMPR+ABS( B( K-1, K ) )
538            END IF
539
540            IF( ABS( B( K, K ) ) .LT. MAX( SMLNUM, ULP*TEMPR ) ) THEN
541*              A diagonal element of B is negligable, move it
542*              to the top and deflate it
543
544               DO K2 = K, ISTART2+1, -1
545                  CALL ZLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1,
546     $                         TEMP )
547                  B( K2-1, K2 ) = TEMP
548                  B( K2-1, K2-1 ) = CZERO
549
550                  CALL ZROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
551     $                       B( ISTARTM, K2-1 ), 1, C1, S1 )
552                  CALL ZROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM,
553     $                       K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
554                  IF ( ILZ ) THEN
555                     CALL ZROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1,
556     $                          S1 )
557                  END IF
558
559                  IF( K2.LT.ISTOP ) THEN
560                     CALL ZLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
561     $                            S1, TEMP )
562                     A( K2, K2-1 ) = TEMP
563                     A( K2+1, K2-1 ) = CZERO
564
565                     CALL ZROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1,
566     $                          K2 ), LDA, C1, S1 )
567                     CALL ZROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1,
568     $                          K2 ), LDB, C1, S1 )
569                     IF( ILQ ) THEN
570                        CALL ZROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
571     $                             C1, DCONJG( S1 ) )
572                     END IF
573                  END IF
574
575               END DO
576
577               IF( ISTART2.LT.ISTOP )THEN
578                  CALL ZLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
579     $                         ISTART2 ), C1, S1, TEMP )
580                  A( ISTART2, ISTART2 ) = TEMP
581                  A( ISTART2+1, ISTART2 ) = CZERO
582
583                  CALL ZROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
584     $                       ISTART2+1 ), LDA, A( ISTART2+1,
585     $                       ISTART2+1 ), LDA, C1, S1 )
586                  CALL ZROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
587     $                       ISTART2+1 ), LDB, B( ISTART2+1,
588     $                       ISTART2+1 ), LDB, C1, S1 )
589                  IF( ILQ ) THEN
590                     CALL ZROT( N, Q( 1, ISTART2 ), 1, Q( 1,
591     $                          ISTART2+1 ), 1, C1, DCONJG( S1 ) )
592                  END IF
593               END IF
594
595               ISTART2 = ISTART2+1
596
597            END IF
598            K = K-1
599         END DO
600
601*        istart2 now points to the top of the bottom right
602*        unreduced Hessenberg block
603         IF ( ISTART2 .GE. ISTOP ) THEN
604            ISTOP = ISTART2-1
605            LD = 0
606            ESHIFT = CZERO
607            CYCLE
608         END IF
609
610         NW = NWR
611         NSHIFTS = NSR
612         NBLOCK = NBR
613
614         IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
615*           Setting nw to the size of the subblock will make AED deflate
616*           all the eigenvalues. This is slightly more efficient than just
617*           using qz_small because the off diagonal part gets updated via BLAS.
618            IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
619               NW = ISTOP-ISTART+1
620               ISTART2 = ISTART
621            ELSE
622               NW = ISTOP-ISTART2+1
623            END IF
624         END IF
625
626*
627*        Time for AED
628*
629         CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA,
630     $                B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
631     $                ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW,
632     $                WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC,
633     $                AED_INFO )
634
635         IF ( N_DEFLATED > 0 ) THEN
636            ISTOP = ISTOP-N_DEFLATED
637            LD = 0
638            ESHIFT = CZERO
639         END IF
640
641         IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
642     $      ISTOP-ISTART2+1 .LT. NMIN ) THEN
643*           AED has uncovered many eigenvalues. Skip a QZ sweep and run
644*           AED again.
645            CYCLE
646         END IF
647
648         LD = LD+1
649
650         NS = MIN( NSHIFTS, ISTOP-ISTART2 )
651         NS = MIN( NS, N_UNDEFLATED )
652         SHIFTPOS = ISTOP-N_DEFLATED-N_UNDEFLATED+1
653
654         IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
655*
656*           Exceptional shift.  Chosen for no particularly good reason.
657*
658            IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP,
659     $         ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
660               ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
661            ELSE
662               ESHIFT = ESHIFT+CONE/( SAFMIN*DBLE( MAXIT ) )
663            END IF
664            ALPHA( SHIFTPOS ) = CONE
665            BETA( SHIFTPOS ) = ESHIFT
666            NS = 1
667         END IF
668
669*
670*        Time for a QZ sweep
671*
672         CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK,
673     $                ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B,
674     $                LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK**
675     $                2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ),
676     $                LWORK-2*NBLOCK**2, SWEEP_INFO )
677
678      END DO
679
680*
681*     Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
682*     If all the eigenvalues have been found, ZHGEQZ will not do any iterations
683*     and only normalize the blocks. In case of a rare convergence failure,
684*     the single shift might perform better.
685*
686   80 CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
687     $             ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
688     $             NORM_INFO )
689
690      INFO = NORM_INFO
691
692      END SUBROUTINE
693