1*> \brief <b> ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZPBSVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbsvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbsvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbsvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
22*                          EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
23*                          WORK, RWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          EQUED, FACT, UPLO
27*       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
28*       DOUBLE PRECISION   RCOND
29*       ..
30*       .. Array Arguments ..
31*       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
32*       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
33*      $                   WORK( * ), X( LDX, * )
34*       ..
35*
36*
37*> \par Purpose:
38*  =============
39*>
40*> \verbatim
41*>
42*> ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
43*> compute the solution to a complex system of linear equations
44*>    A * X = B,
45*> where A is an N-by-N Hermitian positive definite band matrix and X
46*> and B are N-by-NRHS matrices.
47*>
48*> Error bounds on the solution and a condition estimate are also
49*> provided.
50*> \endverbatim
51*
52*> \par Description:
53*  =================
54*>
55*> \verbatim
56*>
57*> The following steps are performed:
58*>
59*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
60*>    the system:
61*>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
62*>    Whether or not the system will be equilibrated depends on the
63*>    scaling of the matrix A, but if equilibration is used, A is
64*>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
65*>
66*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
67*>    factor the matrix A (after equilibration if FACT = 'E') as
68*>       A = U**H * U,  if UPLO = 'U', or
69*>       A = L * L**H,  if UPLO = 'L',
70*>    where U is an upper triangular band matrix, and L is a lower
71*>    triangular band matrix.
72*>
73*> 3. If the leading i-by-i principal minor is not positive definite,
74*>    then the routine returns with INFO = i. Otherwise, the factored
75*>    form of A is used to estimate the condition number of the matrix
76*>    A.  If the reciprocal of the condition number is less than machine
77*>    precision, INFO = N+1 is returned as a warning, but the routine
78*>    still goes on to solve for X and compute error bounds as
79*>    described below.
80*>
81*> 4. The system of equations is solved for X using the factored form
82*>    of A.
83*>
84*> 5. Iterative refinement is applied to improve the computed solution
85*>    matrix and calculate error bounds and backward error estimates
86*>    for it.
87*>
88*> 6. If equilibration was used, the matrix X is premultiplied by
89*>    diag(S) so that it solves the original system before
90*>    equilibration.
91*> \endverbatim
92*
93*  Arguments:
94*  ==========
95*
96*> \param[in] FACT
97*> \verbatim
98*>          FACT is CHARACTER*1
99*>          Specifies whether or not the factored form of the matrix A is
100*>          supplied on entry, and if not, whether the matrix A should be
101*>          equilibrated before it is factored.
102*>          = 'F':  On entry, AFB contains the factored form of A.
103*>                  If EQUED = 'Y', the matrix A has been equilibrated
104*>                  with scaling factors given by S.  AB and AFB will not
105*>                  be modified.
106*>          = 'N':  The matrix A will be copied to AFB and factored.
107*>          = 'E':  The matrix A will be equilibrated if necessary, then
108*>                  copied to AFB and factored.
109*> \endverbatim
110*>
111*> \param[in] UPLO
112*> \verbatim
113*>          UPLO is CHARACTER*1
114*>          = 'U':  Upper triangle of A is stored;
115*>          = 'L':  Lower triangle of A is stored.
116*> \endverbatim
117*>
118*> \param[in] N
119*> \verbatim
120*>          N is INTEGER
121*>          The number of linear equations, i.e., the order of the
122*>          matrix A.  N >= 0.
123*> \endverbatim
124*>
125*> \param[in] KD
126*> \verbatim
127*>          KD is INTEGER
128*>          The number of superdiagonals of the matrix A if UPLO = 'U',
129*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
130*> \endverbatim
131*>
132*> \param[in] NRHS
133*> \verbatim
134*>          NRHS is INTEGER
135*>          The number of right-hand sides, i.e., the number of columns
136*>          of the matrices B and X.  NRHS >= 0.
137*> \endverbatim
138*>
139*> \param[in,out] AB
140*> \verbatim
141*>          AB is COMPLEX*16 array, dimension (LDAB,N)
142*>          On entry, the upper or lower triangle of the Hermitian band
143*>          matrix A, stored in the first KD+1 rows of the array, except
144*>          if FACT = 'F' and EQUED = 'Y', then A must contain the
145*>          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
146*>          is stored in the j-th column of the array AB as follows:
147*>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
148*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
149*>          See below for further details.
150*>
151*>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
152*>          diag(S)*A*diag(S).
153*> \endverbatim
154*>
155*> \param[in] LDAB
156*> \verbatim
157*>          LDAB is INTEGER
158*>          The leading dimension of the array A.  LDAB >= KD+1.
159*> \endverbatim
160*>
161*> \param[in,out] AFB
162*> \verbatim
163*>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
164*>          If FACT = 'F', then AFB is an input argument and on entry
165*>          contains the triangular factor U or L from the Cholesky
166*>          factorization A = U**H *U or A = L*L**H of the band matrix
167*>          A, in the same storage format as A (see AB).  If EQUED = 'Y',
168*>          then AFB is the factored form of the equilibrated matrix A.
169*>
170*>          If FACT = 'N', then AFB is an output argument and on exit
171*>          returns the triangular factor U or L from the Cholesky
172*>          factorization A = U**H *U or A = L*L**H.
173*>
174*>          If FACT = 'E', then AFB is an output argument and on exit
175*>          returns the triangular factor U or L from the Cholesky
176*>          factorization A = U**H *U or A = L*L**H of the equilibrated
177*>          matrix A (see the description of A for the form of the
178*>          equilibrated matrix).
179*> \endverbatim
180*>
181*> \param[in] LDAFB
182*> \verbatim
183*>          LDAFB is INTEGER
184*>          The leading dimension of the array AFB.  LDAFB >= KD+1.
185*> \endverbatim
186*>
187*> \param[in,out] EQUED
188*> \verbatim
189*>          EQUED is CHARACTER*1
190*>          Specifies the form of equilibration that was done.
191*>          = 'N':  No equilibration (always true if FACT = 'N').
192*>          = 'Y':  Equilibration was done, i.e., A has been replaced by
193*>                  diag(S) * A * diag(S).
194*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
195*>          output argument.
196*> \endverbatim
197*>
198*> \param[in,out] S
199*> \verbatim
200*>          S is DOUBLE PRECISION array, dimension (N)
201*>          The scale factors for A; not accessed if EQUED = 'N'.  S is
202*>          an input argument if FACT = 'F'; otherwise, S is an output
203*>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
204*>          must be positive.
205*> \endverbatim
206*>
207*> \param[in,out] B
208*> \verbatim
209*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
210*>          On entry, the N-by-NRHS right hand side matrix B.
211*>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
212*>          B is overwritten by diag(S) * B.
213*> \endverbatim
214*>
215*> \param[in] LDB
216*> \verbatim
217*>          LDB is INTEGER
218*>          The leading dimension of the array B.  LDB >= max(1,N).
219*> \endverbatim
220*>
221*> \param[out] X
222*> \verbatim
223*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
224*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
225*>          the original system of equations.  Note that if EQUED = 'Y',
226*>          A and B are modified on exit, and the solution to the
227*>          equilibrated system is inv(diag(S))*X.
228*> \endverbatim
229*>
230*> \param[in] LDX
231*> \verbatim
232*>          LDX is INTEGER
233*>          The leading dimension of the array X.  LDX >= max(1,N).
234*> \endverbatim
235*>
236*> \param[out] RCOND
237*> \verbatim
238*>          RCOND is DOUBLE PRECISION
239*>          The estimate of the reciprocal condition number of the matrix
240*>          A after equilibration (if done).  If RCOND is less than the
241*>          machine precision (in particular, if RCOND = 0), the matrix
242*>          is singular to working precision.  This condition is
243*>          indicated by a return code of INFO > 0.
244*> \endverbatim
245*>
246*> \param[out] FERR
247*> \verbatim
248*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
249*>          The estimated forward error bound for each solution vector
250*>          X(j) (the j-th column of the solution matrix X).
251*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
252*>          is an estimated upper bound for the magnitude of the largest
253*>          element in (X(j) - XTRUE) divided by the magnitude of the
254*>          largest element in X(j).  The estimate is as reliable as
255*>          the estimate for RCOND, and is almost always a slight
256*>          overestimate of the true error.
257*> \endverbatim
258*>
259*> \param[out] BERR
260*> \verbatim
261*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
262*>          The componentwise relative backward error of each solution
263*>          vector X(j) (i.e., the smallest relative change in
264*>          any element of A or B that makes X(j) an exact solution).
265*> \endverbatim
266*>
267*> \param[out] WORK
268*> \verbatim
269*>          WORK is COMPLEX*16 array, dimension (2*N)
270*> \endverbatim
271*>
272*> \param[out] RWORK
273*> \verbatim
274*>          RWORK is DOUBLE PRECISION array, dimension (N)
275*> \endverbatim
276*>
277*> \param[out] INFO
278*> \verbatim
279*>          INFO is INTEGER
280*>          = 0: successful exit
281*>          < 0: if INFO = -i, the i-th argument had an illegal value
282*>          > 0: if INFO = i, and i is
283*>                <= N:  the leading minor of order i of A is
284*>                       not positive definite, so the factorization
285*>                       could not be completed, and the solution has not
286*>                       been computed. RCOND = 0 is returned.
287*>                = N+1: U is nonsingular, but RCOND is less than machine
288*>                       precision, meaning that the matrix is singular
289*>                       to working precision.  Nevertheless, the
290*>                       solution and error bounds are computed because
291*>                       there are a number of situations where the
292*>                       computed solution can be more accurate than the
293*>                       value of RCOND would suggest.
294*> \endverbatim
295*
296*  Authors:
297*  ========
298*
299*> \author Univ. of Tennessee
300*> \author Univ. of California Berkeley
301*> \author Univ. of Colorado Denver
302*> \author NAG Ltd.
303*
304*> \ingroup complex16OTHERsolve
305*
306*> \par Further Details:
307*  =====================
308*>
309*> \verbatim
310*>
311*>  The band storage scheme is illustrated by the following example, when
312*>  N = 6, KD = 2, and UPLO = 'U':
313*>
314*>  Two-dimensional storage of the Hermitian matrix A:
315*>
316*>     a11  a12  a13
317*>          a22  a23  a24
318*>               a33  a34  a35
319*>                    a44  a45  a46
320*>                         a55  a56
321*>     (aij=conjg(aji))         a66
322*>
323*>  Band storage of the upper triangle of A:
324*>
325*>      *    *   a13  a24  a35  a46
326*>      *   a12  a23  a34  a45  a56
327*>     a11  a22  a33  a44  a55  a66
328*>
329*>  Similarly, if UPLO = 'L' the format of A is as follows:
330*>
331*>     a11  a22  a33  a44  a55  a66
332*>     a21  a32  a43  a54  a65   *
333*>     a31  a42  a53  a64   *    *
334*>
335*>  Array elements marked * are not used by the routine.
336*> \endverbatim
337*>
338*  =====================================================================
339      SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
340     $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
341     $                   WORK, RWORK, INFO )
342*
343*  -- LAPACK driver routine --
344*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
345*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
346*
347*     .. Scalar Arguments ..
348      CHARACTER          EQUED, FACT, UPLO
349      INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
350      DOUBLE PRECISION   RCOND
351*     ..
352*     .. Array Arguments ..
353      DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
354      COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
355     $                   WORK( * ), X( LDX, * )
356*     ..
357*
358*  =====================================================================
359*
360*     .. Parameters ..
361      DOUBLE PRECISION   ZERO, ONE
362      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
363*     ..
364*     .. Local Scalars ..
365      LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
366      INTEGER            I, INFEQU, J, J1, J2
367      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
368*     ..
369*     .. External Functions ..
370      LOGICAL            LSAME
371      DOUBLE PRECISION   DLAMCH, ZLANHB
372      EXTERNAL           LSAME, DLAMCH, ZLANHB
373*     ..
374*     .. External Subroutines ..
375      EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHB, ZPBCON, ZPBEQU,
376     $                   ZPBRFS, ZPBTRF, ZPBTRS
377*     ..
378*     .. Intrinsic Functions ..
379      INTRINSIC          MAX, MIN
380*     ..
381*     .. Executable Statements ..
382*
383      INFO = 0
384      NOFACT = LSAME( FACT, 'N' )
385      EQUIL = LSAME( FACT, 'E' )
386      UPPER = LSAME( UPLO, 'U' )
387      IF( NOFACT .OR. EQUIL ) THEN
388         EQUED = 'N'
389         RCEQU = .FALSE.
390      ELSE
391         RCEQU = LSAME( EQUED, 'Y' )
392         SMLNUM = DLAMCH( 'Safe minimum' )
393         BIGNUM = ONE / SMLNUM
394      END IF
395*
396*     Test the input parameters.
397*
398      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
399     $     THEN
400         INFO = -1
401      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
402         INFO = -2
403      ELSE IF( N.LT.0 ) THEN
404         INFO = -3
405      ELSE IF( KD.LT.0 ) THEN
406         INFO = -4
407      ELSE IF( NRHS.LT.0 ) THEN
408         INFO = -5
409      ELSE IF( LDAB.LT.KD+1 ) THEN
410         INFO = -7
411      ELSE IF( LDAFB.LT.KD+1 ) THEN
412         INFO = -9
413      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
414     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
415         INFO = -10
416      ELSE
417         IF( RCEQU ) THEN
418            SMIN = BIGNUM
419            SMAX = ZERO
420            DO 10 J = 1, N
421               SMIN = MIN( SMIN, S( J ) )
422               SMAX = MAX( SMAX, S( J ) )
423   10       CONTINUE
424            IF( SMIN.LE.ZERO ) THEN
425               INFO = -11
426            ELSE IF( N.GT.0 ) THEN
427               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
428            ELSE
429               SCOND = ONE
430            END IF
431         END IF
432         IF( INFO.EQ.0 ) THEN
433            IF( LDB.LT.MAX( 1, N ) ) THEN
434               INFO = -13
435            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
436               INFO = -15
437            END IF
438         END IF
439      END IF
440*
441      IF( INFO.NE.0 ) THEN
442         CALL XERBLA( 'ZPBSVX', -INFO )
443         RETURN
444      END IF
445*
446      IF( EQUIL ) THEN
447*
448*        Compute row and column scalings to equilibrate the matrix A.
449*
450         CALL ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
451         IF( INFEQU.EQ.0 ) THEN
452*
453*           Equilibrate the matrix.
454*
455            CALL ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
456            RCEQU = LSAME( EQUED, 'Y' )
457         END IF
458      END IF
459*
460*     Scale the right-hand side.
461*
462      IF( RCEQU ) THEN
463         DO 30 J = 1, NRHS
464            DO 20 I = 1, N
465               B( I, J ) = S( I )*B( I, J )
466   20       CONTINUE
467   30    CONTINUE
468      END IF
469*
470      IF( NOFACT .OR. EQUIL ) THEN
471*
472*        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
473*
474         IF( UPPER ) THEN
475            DO 40 J = 1, N
476               J1 = MAX( J-KD, 1 )
477               CALL ZCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
478     $                     AFB( KD+1-J+J1, J ), 1 )
479   40       CONTINUE
480         ELSE
481            DO 50 J = 1, N
482               J2 = MIN( J+KD, N )
483               CALL ZCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
484   50       CONTINUE
485         END IF
486*
487         CALL ZPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
488*
489*        Return if INFO is non-zero.
490*
491         IF( INFO.GT.0 )THEN
492            RCOND = ZERO
493            RETURN
494         END IF
495      END IF
496*
497*     Compute the norm of the matrix A.
498*
499      ANORM = ZLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
500*
501*     Compute the reciprocal of the condition number of A.
502*
503      CALL ZPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
504     $             INFO )
505*
506*     Compute the solution matrix X.
507*
508      CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
509      CALL ZPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
510*
511*     Use iterative refinement to improve the computed solution and
512*     compute error bounds and backward error estimates for it.
513*
514      CALL ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
515     $             LDX, FERR, BERR, WORK, RWORK, INFO )
516*
517*     Transform the solution matrix X to a solution of the original
518*     system.
519*
520      IF( RCEQU ) THEN
521         DO 70 J = 1, NRHS
522            DO 60 I = 1, N
523               X( I, J ) = S( I )*X( I, J )
524   60       CONTINUE
525   70    CONTINUE
526         DO 80 J = 1, NRHS
527            FERR( J ) = FERR( J ) / SCOND
528   80    CONTINUE
529      END IF
530*
531*     Set INFO = N+1 if the matrix is singular to working precision.
532*
533      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
534     $   INFO = N + 1
535*
536      RETURN
537*
538*     End of ZPBSVX
539*
540      END
541