1*> \brief \b ZPPTRF 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZPPTRF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptrf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptrf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptrf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZPPTRF( UPLO, N, AP, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER UPLO 25* INTEGER INFO, N 26* .. 27* .. Array Arguments .. 28* COMPLEX*16 AP( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> ZPPTRF computes the Cholesky factorization of a complex Hermitian 38*> positive definite matrix A stored in packed format. 39*> 40*> The factorization has the form 41*> A = U**H * U, if UPLO = 'U', or 42*> A = L * L**H, if UPLO = 'L', 43*> where U is an upper triangular matrix and L is lower triangular. 44*> \endverbatim 45* 46* Arguments: 47* ========== 48* 49*> \param[in] UPLO 50*> \verbatim 51*> UPLO is CHARACTER*1 52*> = 'U': Upper triangle of A is stored; 53*> = 'L': Lower triangle of A is stored. 54*> \endverbatim 55*> 56*> \param[in] N 57*> \verbatim 58*> N is INTEGER 59*> The order of the matrix A. N >= 0. 60*> \endverbatim 61*> 62*> \param[in,out] AP 63*> \verbatim 64*> AP is COMPLEX*16 array, dimension (N*(N+1)/2) 65*> On entry, the upper or lower triangle of the Hermitian matrix 66*> A, packed columnwise in a linear array. The j-th column of A 67*> is stored in the array AP as follows: 68*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 69*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. 70*> See below for further details. 71*> 72*> On exit, if INFO = 0, the triangular factor U or L from the 73*> Cholesky factorization A = U**H*U or A = L*L**H, in the same 74*> storage format as A. 75*> \endverbatim 76*> 77*> \param[out] INFO 78*> \verbatim 79*> INFO is INTEGER 80*> = 0: successful exit 81*> < 0: if INFO = -i, the i-th argument had an illegal value 82*> > 0: if INFO = i, the leading minor of order i is not 83*> positive definite, and the factorization could not be 84*> completed. 85*> \endverbatim 86* 87* Authors: 88* ======== 89* 90*> \author Univ. of Tennessee 91*> \author Univ. of California Berkeley 92*> \author Univ. of Colorado Denver 93*> \author NAG Ltd. 94* 95*> \ingroup complex16OTHERcomputational 96* 97*> \par Further Details: 98* ===================== 99*> 100*> \verbatim 101*> 102*> The packed storage scheme is illustrated by the following example 103*> when N = 4, UPLO = 'U': 104*> 105*> Two-dimensional storage of the Hermitian matrix A: 106*> 107*> a11 a12 a13 a14 108*> a22 a23 a24 109*> a33 a34 (aij = conjg(aji)) 110*> a44 111*> 112*> Packed storage of the upper triangle of A: 113*> 114*> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] 115*> \endverbatim 116*> 117* ===================================================================== 118 SUBROUTINE ZPPTRF( UPLO, N, AP, INFO ) 119* 120* -- LAPACK computational routine -- 121* -- LAPACK is a software package provided by Univ. of Tennessee, -- 122* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 123* 124* .. Scalar Arguments .. 125 CHARACTER UPLO 126 INTEGER INFO, N 127* .. 128* .. Array Arguments .. 129 COMPLEX*16 AP( * ) 130* .. 131* 132* ===================================================================== 133* 134* .. Parameters .. 135 DOUBLE PRECISION ZERO, ONE 136 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 137* .. 138* .. Local Scalars .. 139 LOGICAL UPPER 140 INTEGER J, JC, JJ 141 DOUBLE PRECISION AJJ 142* .. 143* .. External Functions .. 144 LOGICAL LSAME 145 COMPLEX*16 ZDOTC 146 EXTERNAL LSAME, ZDOTC 147* .. 148* .. External Subroutines .. 149 EXTERNAL XERBLA, ZDSCAL, ZHPR, ZTPSV 150* .. 151* .. Intrinsic Functions .. 152 INTRINSIC DBLE, SQRT 153* .. 154* .. Executable Statements .. 155* 156* Test the input parameters. 157* 158 INFO = 0 159 UPPER = LSAME( UPLO, 'U' ) 160 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 161 INFO = -1 162 ELSE IF( N.LT.0 ) THEN 163 INFO = -2 164 END IF 165 IF( INFO.NE.0 ) THEN 166 CALL XERBLA( 'ZPPTRF', -INFO ) 167 RETURN 168 END IF 169* 170* Quick return if possible 171* 172 IF( N.EQ.0 ) 173 $ RETURN 174* 175 IF( UPPER ) THEN 176* 177* Compute the Cholesky factorization A = U**H * U. 178* 179 JJ = 0 180 DO 10 J = 1, N 181 JC = JJ + 1 182 JJ = JJ + J 183* 184* Compute elements 1:J-1 of column J. 185* 186 IF( J.GT.1 ) 187 $ CALL ZTPSV( 'Upper', 'Conjugate transpose', 'Non-unit', 188 $ J-1, AP, AP( JC ), 1 ) 189* 190* Compute U(J,J) and test for non-positive-definiteness. 191* 192 AJJ = DBLE( AP( JJ ) ) - DBLE( ZDOTC( J-1, 193 $ AP( JC ), 1, AP( JC ), 1 ) ) 194 IF( AJJ.LE.ZERO ) THEN 195 AP( JJ ) = AJJ 196 GO TO 30 197 END IF 198 AP( JJ ) = SQRT( AJJ ) 199 10 CONTINUE 200 ELSE 201* 202* Compute the Cholesky factorization A = L * L**H. 203* 204 JJ = 1 205 DO 20 J = 1, N 206* 207* Compute L(J,J) and test for non-positive-definiteness. 208* 209 AJJ = DBLE( AP( JJ ) ) 210 IF( AJJ.LE.ZERO ) THEN 211 AP( JJ ) = AJJ 212 GO TO 30 213 END IF 214 AJJ = SQRT( AJJ ) 215 AP( JJ ) = AJJ 216* 217* Compute elements J+1:N of column J and update the trailing 218* submatrix. 219* 220 IF( J.LT.N ) THEN 221 CALL ZDSCAL( N-J, ONE / AJJ, AP( JJ+1 ), 1 ) 222 CALL ZHPR( 'Lower', N-J, -ONE, AP( JJ+1 ), 1, 223 $ AP( JJ+N-J+1 ) ) 224 JJ = JJ + N - J + 1 225 END IF 226 20 CONTINUE 227 END IF 228 GO TO 40 229* 230 30 CONTINUE 231 INFO = J 232* 233 40 CONTINUE 234 RETURN 235* 236* End of ZPPTRF 237* 238 END 239