1*> \brief \b ZTRCON
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZTRCON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrcon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrcon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrcon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
22*                          RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          DIAG, NORM, UPLO
26*       INTEGER            INFO, LDA, N
27*       DOUBLE PRECISION   RCOND
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   RWORK( * )
31*       COMPLEX*16         A( LDA, * ), WORK( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> ZTRCON estimates the reciprocal of the condition number of a
41*> triangular matrix A, in either the 1-norm or the infinity-norm.
42*>
43*> The norm of A is computed and an estimate is obtained for
44*> norm(inv(A)), then the reciprocal of the condition number is
45*> computed as
46*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47*> \endverbatim
48*
49*  Arguments:
50*  ==========
51*
52*> \param[in] NORM
53*> \verbatim
54*>          NORM is CHARACTER*1
55*>          Specifies whether the 1-norm condition number or the
56*>          infinity-norm condition number is required:
57*>          = '1' or 'O':  1-norm;
58*>          = 'I':         Infinity-norm.
59*> \endverbatim
60*>
61*> \param[in] UPLO
62*> \verbatim
63*>          UPLO is CHARACTER*1
64*>          = 'U':  A is upper triangular;
65*>          = 'L':  A is lower triangular.
66*> \endverbatim
67*>
68*> \param[in] DIAG
69*> \verbatim
70*>          DIAG is CHARACTER*1
71*>          = 'N':  A is non-unit triangular;
72*>          = 'U':  A is unit triangular.
73*> \endverbatim
74*>
75*> \param[in] N
76*> \verbatim
77*>          N is INTEGER
78*>          The order of the matrix A.  N >= 0.
79*> \endverbatim
80*>
81*> \param[in] A
82*> \verbatim
83*>          A is COMPLEX*16 array, dimension (LDA,N)
84*>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
85*>          upper triangular part of the array A contains the upper
86*>          triangular matrix, and the strictly lower triangular part of
87*>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
88*>          triangular part of the array A contains the lower triangular
89*>          matrix, and the strictly upper triangular part of A is not
90*>          referenced.  If DIAG = 'U', the diagonal elements of A are
91*>          also not referenced and are assumed to be 1.
92*> \endverbatim
93*>
94*> \param[in] LDA
95*> \verbatim
96*>          LDA is INTEGER
97*>          The leading dimension of the array A.  LDA >= max(1,N).
98*> \endverbatim
99*>
100*> \param[out] RCOND
101*> \verbatim
102*>          RCOND is DOUBLE PRECISION
103*>          The reciprocal of the condition number of the matrix A,
104*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
105*> \endverbatim
106*>
107*> \param[out] WORK
108*> \verbatim
109*>          WORK is COMPLEX*16 array, dimension (2*N)
110*> \endverbatim
111*>
112*> \param[out] RWORK
113*> \verbatim
114*>          RWORK is DOUBLE PRECISION array, dimension (N)
115*> \endverbatim
116*>
117*> \param[out] INFO
118*> \verbatim
119*>          INFO is INTEGER
120*>          = 0:  successful exit
121*>          < 0:  if INFO = -i, the i-th argument had an illegal value
122*> \endverbatim
123*
124*  Authors:
125*  ========
126*
127*> \author Univ. of Tennessee
128*> \author Univ. of California Berkeley
129*> \author Univ. of Colorado Denver
130*> \author NAG Ltd.
131*
132*> \ingroup complex16OTHERcomputational
133*
134*  =====================================================================
135      SUBROUTINE ZTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
136     $                   RWORK, INFO )
137*
138*  -- LAPACK computational routine --
139*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
140*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142*     .. Scalar Arguments ..
143      CHARACTER          DIAG, NORM, UPLO
144      INTEGER            INFO, LDA, N
145      DOUBLE PRECISION   RCOND
146*     ..
147*     .. Array Arguments ..
148      DOUBLE PRECISION   RWORK( * )
149      COMPLEX*16         A( LDA, * ), WORK( * )
150*     ..
151*
152*  =====================================================================
153*
154*     .. Parameters ..
155      DOUBLE PRECISION   ONE, ZERO
156      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
157*     ..
158*     .. Local Scalars ..
159      LOGICAL            NOUNIT, ONENRM, UPPER
160      CHARACTER          NORMIN
161      INTEGER            IX, KASE, KASE1
162      DOUBLE PRECISION   AINVNM, ANORM, SCALE, SMLNUM, XNORM
163      COMPLEX*16         ZDUM
164*     ..
165*     .. Local Arrays ..
166      INTEGER            ISAVE( 3 )
167*     ..
168*     .. External Functions ..
169      LOGICAL            LSAME
170      INTEGER            IZAMAX
171      DOUBLE PRECISION   DLAMCH, ZLANTR
172      EXTERNAL           LSAME, IZAMAX, DLAMCH, ZLANTR
173*     ..
174*     .. External Subroutines ..
175      EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATRS
176*     ..
177*     .. Intrinsic Functions ..
178      INTRINSIC          ABS, DBLE, DIMAG, MAX
179*     ..
180*     .. Statement Functions ..
181      DOUBLE PRECISION   CABS1
182*     ..
183*     .. Statement Function definitions ..
184      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
185*     ..
186*     .. Executable Statements ..
187*
188*     Test the input parameters.
189*
190      INFO = 0
191      UPPER = LSAME( UPLO, 'U' )
192      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
193      NOUNIT = LSAME( DIAG, 'N' )
194*
195      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
196         INFO = -1
197      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
198         INFO = -2
199      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
200         INFO = -3
201      ELSE IF( N.LT.0 ) THEN
202         INFO = -4
203      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
204         INFO = -6
205      END IF
206      IF( INFO.NE.0 ) THEN
207         CALL XERBLA( 'ZTRCON', -INFO )
208         RETURN
209      END IF
210*
211*     Quick return if possible
212*
213      IF( N.EQ.0 ) THEN
214         RCOND = ONE
215         RETURN
216      END IF
217*
218      RCOND = ZERO
219      SMLNUM = DLAMCH( 'Safe minimum' )*DBLE( MAX( 1, N ) )
220*
221*     Compute the norm of the triangular matrix A.
222*
223      ANORM = ZLANTR( NORM, UPLO, DIAG, N, N, A, LDA, RWORK )
224*
225*     Continue only if ANORM > 0.
226*
227      IF( ANORM.GT.ZERO ) THEN
228*
229*        Estimate the norm of the inverse of A.
230*
231         AINVNM = ZERO
232         NORMIN = 'N'
233         IF( ONENRM ) THEN
234            KASE1 = 1
235         ELSE
236            KASE1 = 2
237         END IF
238         KASE = 0
239   10    CONTINUE
240         CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
241         IF( KASE.NE.0 ) THEN
242            IF( KASE.EQ.KASE1 ) THEN
243*
244*              Multiply by inv(A).
245*
246               CALL ZLATRS( UPLO, 'No transpose', DIAG, NORMIN, N, A,
247     $                      LDA, WORK, SCALE, RWORK, INFO )
248            ELSE
249*
250*              Multiply by inv(A**H).
251*
252               CALL ZLATRS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
253     $                      N, A, LDA, WORK, SCALE, RWORK, INFO )
254            END IF
255            NORMIN = 'Y'
256*
257*           Multiply by 1/SCALE if doing so will not cause overflow.
258*
259            IF( SCALE.NE.ONE ) THEN
260               IX = IZAMAX( N, WORK, 1 )
261               XNORM = CABS1( WORK( IX ) )
262               IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
263     $            GO TO 20
264               CALL ZDRSCL( N, SCALE, WORK, 1 )
265            END IF
266            GO TO 10
267         END IF
268*
269*        Compute the estimate of the reciprocal condition number.
270*
271         IF( AINVNM.NE.ZERO )
272     $      RCOND = ( ONE / ANORM ) / AINVNM
273      END IF
274*
275   20 CONTINUE
276      RETURN
277*
278*     End of ZTRCON
279*
280      END
281