1*> \brief \b DGET52 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE DGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR, 12* ALPHAI, BETA, WORK, RESULT ) 13* 14* .. Scalar Arguments .. 15* LOGICAL LEFT 16* INTEGER LDA, LDB, LDE, N 17* .. 18* .. Array Arguments .. 19* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), 20* $ B( LDB, * ), BETA( * ), E( LDE, * ), 21* $ RESULT( 2 ), WORK( * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> DGET52 does an eigenvector check for the generalized eigenvalue 31*> problem. 32*> 33*> The basic test for right eigenvectors is: 34*> 35*> | b(j) A E(j) - a(j) B E(j) | 36*> RESULT(1) = max ------------------------------- 37*> j n ulp max( |b(j) A|, |a(j) B| ) 38*> 39*> using the 1-norm. Here, a(j)/b(j) = w is the j-th generalized 40*> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th 41*> generalized eigenvalue of m A - B. 42*> 43*> For real eigenvalues, the test is straightforward. For complex 44*> eigenvalues, E(j) and a(j) are complex, represented by 45*> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that 46*> eigenvector becomes 47*> 48*> max( |Wr|, |Wi| ) 49*> -------------------------------------------- 50*> n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| ) 51*> 52*> where 53*> 54*> Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j) 55*> 56*> Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j) 57*> 58*> T T _ 59*> For left eigenvectors, A , B , a, and b are used. 60*> 61*> DGET52 also tests the normalization of E. Each eigenvector is 62*> supposed to be normalized so that the maximum "absolute value" 63*> of its elements is 1, where in this case, "absolute value" 64*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this 65*> maximum "absolute value" norm of a vector v M(v). 66*> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate 67*> vector. The normalization test is: 68*> 69*> RESULT(2) = max | M(v(j)) - 1 | / ( n ulp ) 70*> eigenvectors v(j) 71*> \endverbatim 72* 73* Arguments: 74* ========== 75* 76*> \param[in] LEFT 77*> \verbatim 78*> LEFT is LOGICAL 79*> =.TRUE.: The eigenvectors in the columns of E are assumed 80*> to be *left* eigenvectors. 81*> =.FALSE.: The eigenvectors in the columns of E are assumed 82*> to be *right* eigenvectors. 83*> \endverbatim 84*> 85*> \param[in] N 86*> \verbatim 87*> N is INTEGER 88*> The size of the matrices. If it is zero, DGET52 does 89*> nothing. It must be at least zero. 90*> \endverbatim 91*> 92*> \param[in] A 93*> \verbatim 94*> A is DOUBLE PRECISION array, dimension (LDA, N) 95*> The matrix A. 96*> \endverbatim 97*> 98*> \param[in] LDA 99*> \verbatim 100*> LDA is INTEGER 101*> The leading dimension of A. It must be at least 1 102*> and at least N. 103*> \endverbatim 104*> 105*> \param[in] B 106*> \verbatim 107*> B is DOUBLE PRECISION array, dimension (LDB, N) 108*> The matrix B. 109*> \endverbatim 110*> 111*> \param[in] LDB 112*> \verbatim 113*> LDB is INTEGER 114*> The leading dimension of B. It must be at least 1 115*> and at least N. 116*> \endverbatim 117*> 118*> \param[in] E 119*> \verbatim 120*> E is DOUBLE PRECISION array, dimension (LDE, N) 121*> The matrix of eigenvectors. It must be O( 1 ). Complex 122*> eigenvalues and eigenvectors always come in pairs, the 123*> eigenvalue and its conjugate being stored in adjacent 124*> elements of ALPHAR, ALPHAI, and BETA. Thus, if a(j)/b(j) 125*> and a(j+1)/b(j+1) are a complex conjugate pair of 126*> generalized eigenvalues, then E(,j) contains the real part 127*> of the eigenvector and E(,j+1) contains the imaginary part. 128*> Note that whether E(,j) is a real eigenvector or part of a 129*> complex one is specified by whether ALPHAI(j) is zero or not. 130*> \endverbatim 131*> 132*> \param[in] LDE 133*> \verbatim 134*> LDE is INTEGER 135*> The leading dimension of E. It must be at least 1 and at 136*> least N. 137*> \endverbatim 138*> 139*> \param[in] ALPHAR 140*> \verbatim 141*> ALPHAR is DOUBLE PRECISION array, dimension (N) 142*> The real parts of the values a(j) as described above, which, 143*> along with b(j), define the generalized eigenvalues. 144*> Complex eigenvalues always come in complex conjugate pairs 145*> a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent 146*> elements in ALPHAR, ALPHAI, and BETA. Thus, if the j-th 147*> and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1) 148*> is assumed to be equal to ALPHAR(j)/BETA(j). 149*> \endverbatim 150*> 151*> \param[in] ALPHAI 152*> \verbatim 153*> ALPHAI is DOUBLE PRECISION array, dimension (N) 154*> The imaginary parts of the values a(j) as described above, 155*> which, along with b(j), define the generalized eigenvalues. 156*> If ALPHAI(j)=0, then the eigenvalue is real, otherwise it 157*> is part of a complex conjugate pair. Complex eigenvalues 158*> always come in complex conjugate pairs a(j)/b(j) and 159*> a(j+1)/b(j+1), which are stored in adjacent elements in 160*> ALPHAR, ALPHAI, and BETA. Thus, if the j-th and (j+1)-st 161*> eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to 162*> be equal to -ALPHAI(j)/BETA(j). Also, nonzero values in 163*> ALPHAI are assumed to always come in adjacent pairs. 164*> \endverbatim 165*> 166*> \param[in] BETA 167*> \verbatim 168*> BETA is DOUBLE PRECISION array, dimension (N) 169*> The values b(j) as described above, which, along with a(j), 170*> define the generalized eigenvalues. 171*> \endverbatim 172*> 173*> \param[out] WORK 174*> \verbatim 175*> WORK is DOUBLE PRECISION array, dimension (N**2+N) 176*> \endverbatim 177*> 178*> \param[out] RESULT 179*> \verbatim 180*> RESULT is DOUBLE PRECISION array, dimension (2) 181*> The values computed by the test described above. If A E or 182*> B E is likely to overflow, then RESULT(1:2) is set to 183*> 10 / ulp. 184*> \endverbatim 185* 186* Authors: 187* ======== 188* 189*> \author Univ. of Tennessee 190*> \author Univ. of California Berkeley 191*> \author Univ. of Colorado Denver 192*> \author NAG Ltd. 193* 194*> \ingroup double_eig 195* 196* ===================================================================== 197 SUBROUTINE DGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR, 198 $ ALPHAI, BETA, WORK, RESULT ) 199* 200* -- LAPACK test routine -- 201* -- LAPACK is a software package provided by Univ. of Tennessee, -- 202* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 203* 204* .. Scalar Arguments .. 205 LOGICAL LEFT 206 INTEGER LDA, LDB, LDE, N 207* .. 208* .. Array Arguments .. 209 DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), 210 $ B( LDB, * ), BETA( * ), E( LDE, * ), 211 $ RESULT( 2 ), WORK( * ) 212* .. 213* 214* ===================================================================== 215* 216* .. Parameters .. 217 DOUBLE PRECISION ZERO, ONE, TEN 218 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 ) 219* .. 220* .. Local Scalars .. 221 LOGICAL ILCPLX 222 CHARACTER NORMAB, TRANS 223 INTEGER J, JVEC 224 DOUBLE PRECISION ABMAX, ACOEF, ALFMAX, ANORM, BCOEFI, BCOEFR, 225 $ BETMAX, BNORM, ENORM, ENRMER, ERRNRM, SAFMAX, 226 $ SAFMIN, SALFI, SALFR, SBETA, SCALE, TEMP1, ULP 227* .. 228* .. External Functions .. 229 DOUBLE PRECISION DLAMCH, DLANGE 230 EXTERNAL DLAMCH, DLANGE 231* .. 232* .. External Subroutines .. 233 EXTERNAL DGEMV 234* .. 235* .. Intrinsic Functions .. 236 INTRINSIC ABS, DBLE, MAX 237* .. 238* .. Executable Statements .. 239* 240 RESULT( 1 ) = ZERO 241 RESULT( 2 ) = ZERO 242 IF( N.LE.0 ) 243 $ RETURN 244* 245 SAFMIN = DLAMCH( 'Safe minimum' ) 246 SAFMAX = ONE / SAFMIN 247 ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) 248* 249 IF( LEFT ) THEN 250 TRANS = 'T' 251 NORMAB = 'I' 252 ELSE 253 TRANS = 'N' 254 NORMAB = 'O' 255 END IF 256* 257* Norm of A, B, and E: 258* 259 ANORM = MAX( DLANGE( NORMAB, N, N, A, LDA, WORK ), SAFMIN ) 260 BNORM = MAX( DLANGE( NORMAB, N, N, B, LDB, WORK ), SAFMIN ) 261 ENORM = MAX( DLANGE( 'O', N, N, E, LDE, WORK ), ULP ) 262 ALFMAX = SAFMAX / MAX( ONE, BNORM ) 263 BETMAX = SAFMAX / MAX( ONE, ANORM ) 264* 265* Compute error matrix. 266* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| ) 267* 268 ILCPLX = .FALSE. 269 DO 10 JVEC = 1, N 270 IF( ILCPLX ) THEN 271* 272* 2nd Eigenvalue/-vector of pair -- do nothing 273* 274 ILCPLX = .FALSE. 275 ELSE 276 SALFR = ALPHAR( JVEC ) 277 SALFI = ALPHAI( JVEC ) 278 SBETA = BETA( JVEC ) 279 IF( SALFI.EQ.ZERO ) THEN 280* 281* Real eigenvalue and -vector 282* 283 ABMAX = MAX( ABS( SALFR ), ABS( SBETA ) ) 284 IF( ABS( SALFR ).GT.ALFMAX .OR. ABS( SBETA ).GT. 285 $ BETMAX .OR. ABMAX.LT.ONE ) THEN 286 SCALE = ONE / MAX( ABMAX, SAFMIN ) 287 SALFR = SCALE*SALFR 288 SBETA = SCALE*SBETA 289 END IF 290 SCALE = ONE / MAX( ABS( SALFR )*BNORM, 291 $ ABS( SBETA )*ANORM, SAFMIN ) 292 ACOEF = SCALE*SBETA 293 BCOEFR = SCALE*SALFR 294 CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1, 295 $ ZERO, WORK( N*( JVEC-1 )+1 ), 1 ) 296 CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ), 297 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 298 ELSE 299* 300* Complex conjugate pair 301* 302 ILCPLX = .TRUE. 303 IF( JVEC.EQ.N ) THEN 304 RESULT( 1 ) = TEN / ULP 305 RETURN 306 END IF 307 ABMAX = MAX( ABS( SALFR )+ABS( SALFI ), ABS( SBETA ) ) 308 IF( ABS( SALFR )+ABS( SALFI ).GT.ALFMAX .OR. 309 $ ABS( SBETA ).GT.BETMAX .OR. ABMAX.LT.ONE ) THEN 310 SCALE = ONE / MAX( ABMAX, SAFMIN ) 311 SALFR = SCALE*SALFR 312 SALFI = SCALE*SALFI 313 SBETA = SCALE*SBETA 314 END IF 315 SCALE = ONE / MAX( ( ABS( SALFR )+ABS( SALFI ) )*BNORM, 316 $ ABS( SBETA )*ANORM, SAFMIN ) 317 ACOEF = SCALE*SBETA 318 BCOEFR = SCALE*SALFR 319 BCOEFI = SCALE*SALFI 320 IF( LEFT ) THEN 321 BCOEFI = -BCOEFI 322 END IF 323* 324 CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1, 325 $ ZERO, WORK( N*( JVEC-1 )+1 ), 1 ) 326 CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ), 327 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 328 CALL DGEMV( TRANS, N, N, BCOEFI, B, LDA, E( 1, JVEC+1 ), 329 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 330* 331 CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC+1 ), 332 $ 1, ZERO, WORK( N*JVEC+1 ), 1 ) 333 CALL DGEMV( TRANS, N, N, -BCOEFI, B, LDA, E( 1, JVEC ), 334 $ 1, ONE, WORK( N*JVEC+1 ), 1 ) 335 CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC+1 ), 336 $ 1, ONE, WORK( N*JVEC+1 ), 1 ) 337 END IF 338 END IF 339 10 CONTINUE 340* 341 ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N**2+1 ) ) / ENORM 342* 343* Compute RESULT(1) 344* 345 RESULT( 1 ) = ERRNRM / ULP 346* 347* Normalization of E: 348* 349 ENRMER = ZERO 350 ILCPLX = .FALSE. 351 DO 40 JVEC = 1, N 352 IF( ILCPLX ) THEN 353 ILCPLX = .FALSE. 354 ELSE 355 TEMP1 = ZERO 356 IF( ALPHAI( JVEC ).EQ.ZERO ) THEN 357 DO 20 J = 1, N 358 TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) ) 359 20 CONTINUE 360 ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) ) 361 ELSE 362 ILCPLX = .TRUE. 363 DO 30 J = 1, N 364 TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+ 365 $ ABS( E( J, JVEC+1 ) ) ) 366 30 CONTINUE 367 ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) ) 368 END IF 369 END IF 370 40 CONTINUE 371* 372* Compute RESULT(2) : the normalization error in E. 373* 374 RESULT( 2 ) = ENRMER / ( DBLE( N )*ULP ) 375* 376 RETURN 377* 378* End of DGET52 379* 380 END 381