1*> \brief \b CPPT01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
12*
13*       .. Scalar Arguments ..
14*       CHARACTER          UPLO
15*       INTEGER            N
16*       REAL               RESID
17*       ..
18*       .. Array Arguments ..
19*       REAL               RWORK( * )
20*       COMPLEX            A( * ), AFAC( * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> CPPT01 reconstructs a Hermitian positive definite packed matrix A
30*> from its L*L' or U'*U factorization and computes the residual
31*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
32*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
33*> where EPS is the machine epsilon, L' is the conjugate transpose of
34*> L, and U' is the conjugate transpose of U.
35*> \endverbatim
36*
37*  Arguments:
38*  ==========
39*
40*> \param[in] UPLO
41*> \verbatim
42*>          UPLO is CHARACTER*1
43*>          Specifies whether the upper or lower triangular part of the
44*>          Hermitian matrix A is stored:
45*>          = 'U':  Upper triangular
46*>          = 'L':  Lower triangular
47*> \endverbatim
48*>
49*> \param[in] N
50*> \verbatim
51*>          N is INTEGER
52*>          The number of rows and columns of the matrix A.  N >= 0.
53*> \endverbatim
54*>
55*> \param[in] A
56*> \verbatim
57*>          A is COMPLEX array, dimension (N*(N+1)/2)
58*>          The original Hermitian matrix A, stored as a packed
59*>          triangular matrix.
60*> \endverbatim
61*>
62*> \param[in,out] AFAC
63*> \verbatim
64*>          AFAC is COMPLEX array, dimension (N*(N+1)/2)
65*>          On entry, the factor L or U from the L*L' or U'*U
66*>          factorization of A, stored as a packed triangular matrix.
67*>          Overwritten with the reconstructed matrix, and then with the
68*>          difference L*L' - A (or U'*U - A).
69*> \endverbatim
70*>
71*> \param[out] RWORK
72*> \verbatim
73*>          RWORK is REAL array, dimension (N)
74*> \endverbatim
75*>
76*> \param[out] RESID
77*> \verbatim
78*>          RESID is REAL
79*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
80*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
81*> \endverbatim
82*
83*  Authors:
84*  ========
85*
86*> \author Univ. of Tennessee
87*> \author Univ. of California Berkeley
88*> \author Univ. of Colorado Denver
89*> \author NAG Ltd.
90*
91*> \ingroup complex_lin
92*
93*  =====================================================================
94      SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
95*
96*  -- LAPACK test routine --
97*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
98*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
99*
100*     .. Scalar Arguments ..
101      CHARACTER          UPLO
102      INTEGER            N
103      REAL               RESID
104*     ..
105*     .. Array Arguments ..
106      REAL               RWORK( * )
107      COMPLEX            A( * ), AFAC( * )
108*     ..
109*
110*  =====================================================================
111*
112*     .. Parameters ..
113      REAL               ZERO, ONE
114      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
115*     ..
116*     .. Local Scalars ..
117      INTEGER            I, K, KC
118      REAL               ANORM, EPS, TR
119      COMPLEX            TC
120*     ..
121*     .. External Functions ..
122      LOGICAL            LSAME
123      REAL               CLANHP, SLAMCH
124      COMPLEX            CDOTC
125      EXTERNAL           LSAME, CLANHP, SLAMCH, CDOTC
126*     ..
127*     .. External Subroutines ..
128      EXTERNAL           CHPR, CSCAL, CTPMV
129*     ..
130*     .. Intrinsic Functions ..
131      INTRINSIC          AIMAG, REAL
132*     ..
133*     .. Executable Statements ..
134*
135*     Quick exit if N = 0
136*
137      IF( N.LE.0 ) THEN
138         RESID = ZERO
139         RETURN
140      END IF
141*
142*     Exit with RESID = 1/EPS if ANORM = 0.
143*
144      EPS = SLAMCH( 'Epsilon' )
145      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
146      IF( ANORM.LE.ZERO ) THEN
147         RESID = ONE / EPS
148         RETURN
149      END IF
150*
151*     Check the imaginary parts of the diagonal elements and return with
152*     an error code if any are nonzero.
153*
154      KC = 1
155      IF( LSAME( UPLO, 'U' ) ) THEN
156         DO 10 K = 1, N
157            IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
158               RESID = ONE / EPS
159               RETURN
160            END IF
161            KC = KC + K + 1
162   10    CONTINUE
163      ELSE
164         DO 20 K = 1, N
165            IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
166               RESID = ONE / EPS
167               RETURN
168            END IF
169            KC = KC + N - K + 1
170   20    CONTINUE
171      END IF
172*
173*     Compute the product U'*U, overwriting U.
174*
175      IF( LSAME( UPLO, 'U' ) ) THEN
176         KC = ( N*( N-1 ) ) / 2 + 1
177         DO 30 K = N, 1, -1
178*
179*           Compute the (K,K) element of the result.
180*
181            TR = CDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 )
182            AFAC( KC+K-1 ) = TR
183*
184*           Compute the rest of column K.
185*
186            IF( K.GT.1 ) THEN
187               CALL CTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
188     $                     AFAC( KC ), 1 )
189               KC = KC - ( K-1 )
190            END IF
191   30    CONTINUE
192*
193*        Compute the difference  L*L' - A
194*
195         KC = 1
196         DO 50 K = 1, N
197            DO 40 I = 1, K - 1
198               AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 )
199   40       CONTINUE
200            AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - REAL( A( KC+K-1 ) )
201            KC = KC + K
202   50    CONTINUE
203*
204*     Compute the product L*L', overwriting L.
205*
206      ELSE
207         KC = ( N*( N+1 ) ) / 2
208         DO 60 K = N, 1, -1
209*
210*           Add a multiple of column K of the factor L to each of
211*           columns K+1 through N.
212*
213            IF( K.LT.N )
214     $         CALL CHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
215     $                    AFAC( KC+N-K+1 ) )
216*
217*           Scale column K by the diagonal element.
218*
219            TC = AFAC( KC )
220            CALL CSCAL( N-K+1, TC, AFAC( KC ), 1 )
221*
222            KC = KC - ( N-K+2 )
223   60    CONTINUE
224*
225*        Compute the difference  U'*U - A
226*
227         KC = 1
228         DO 80 K = 1, N
229            AFAC( KC ) = AFAC( KC ) - REAL( A( KC ) )
230            DO 70 I = K + 1, N
231               AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K )
232   70       CONTINUE
233            KC = KC + N - K + 1
234   80    CONTINUE
235      END IF
236*
237*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
238*
239      RESID = CLANHP( '1', UPLO, N, AFAC, RWORK )
240*
241      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
242*
243      RETURN
244*
245*     End of CPPT01
246*
247      END
248