1*> \brief \b CSPT03 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND, 12* RESID ) 13* 14* .. Scalar Arguments .. 15* CHARACTER UPLO 16* INTEGER LDW, N 17* REAL RCOND, RESID 18* .. 19* .. Array Arguments .. 20* REAL RWORK( * ) 21* COMPLEX A( * ), AINV( * ), WORK( LDW, * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> CSPT03 computes the residual for a complex symmetric packed matrix 31*> times its inverse: 32*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), 33*> where EPS is the machine epsilon. 34*> \endverbatim 35* 36* Arguments: 37* ========== 38* 39*> \param[in] UPLO 40*> \verbatim 41*> UPLO is CHARACTER*1 42*> Specifies whether the upper or lower triangular part of the 43*> complex symmetric matrix A is stored: 44*> = 'U': Upper triangular 45*> = 'L': Lower triangular 46*> \endverbatim 47*> 48*> \param[in] N 49*> \verbatim 50*> N is INTEGER 51*> The number of rows and columns of the matrix A. N >= 0. 52*> \endverbatim 53*> 54*> \param[in] A 55*> \verbatim 56*> A is COMPLEX array, dimension (N*(N+1)/2) 57*> The original complex symmetric matrix A, stored as a packed 58*> triangular matrix. 59*> \endverbatim 60*> 61*> \param[in] AINV 62*> \verbatim 63*> AINV is COMPLEX array, dimension (N*(N+1)/2) 64*> The (symmetric) inverse of the matrix A, stored as a packed 65*> triangular matrix. 66*> \endverbatim 67*> 68*> \param[out] WORK 69*> \verbatim 70*> WORK is COMPLEX array, dimension (LDW,N) 71*> \endverbatim 72*> 73*> \param[in] LDW 74*> \verbatim 75*> LDW is INTEGER 76*> The leading dimension of the array WORK. LDW >= max(1,N). 77*> \endverbatim 78*> 79*> \param[out] RWORK 80*> \verbatim 81*> RWORK is REAL array, dimension (N) 82*> \endverbatim 83*> 84*> \param[out] RCOND 85*> \verbatim 86*> RCOND is REAL 87*> The reciprocal of the condition number of A, computed as 88*> ( 1/norm(A) ) / norm(AINV). 89*> \endverbatim 90*> 91*> \param[out] RESID 92*> \verbatim 93*> RESID is REAL 94*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) 95*> \endverbatim 96* 97* Authors: 98* ======== 99* 100*> \author Univ. of Tennessee 101*> \author Univ. of California Berkeley 102*> \author Univ. of Colorado Denver 103*> \author NAG Ltd. 104* 105*> \ingroup complex_lin 106* 107* ===================================================================== 108 SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND, 109 $ RESID ) 110* 111* -- LAPACK test routine -- 112* -- LAPACK is a software package provided by Univ. of Tennessee, -- 113* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 114* 115* .. Scalar Arguments .. 116 CHARACTER UPLO 117 INTEGER LDW, N 118 REAL RCOND, RESID 119* .. 120* .. Array Arguments .. 121 REAL RWORK( * ) 122 COMPLEX A( * ), AINV( * ), WORK( LDW, * ) 123* .. 124* 125* ===================================================================== 126* 127* .. Parameters .. 128 REAL ZERO, ONE 129 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 130* .. 131* .. Local Scalars .. 132 INTEGER I, ICOL, J, JCOL, K, KCOL, NALL 133 REAL AINVNM, ANORM, EPS 134 COMPLEX T 135* .. 136* .. External Functions .. 137 LOGICAL LSAME 138 REAL CLANGE, CLANSP, SLAMCH 139 COMPLEX CDOTU 140 EXTERNAL LSAME, CLANGE, CLANSP, SLAMCH, CDOTU 141* .. 142* .. Intrinsic Functions .. 143 INTRINSIC REAL 144* .. 145* .. Executable Statements .. 146* 147* Quick exit if N = 0. 148* 149 IF( N.LE.0 ) THEN 150 RCOND = ONE 151 RESID = ZERO 152 RETURN 153 END IF 154* 155* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. 156* 157 EPS = SLAMCH( 'Epsilon' ) 158 ANORM = CLANSP( '1', UPLO, N, A, RWORK ) 159 AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK ) 160 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 161 RCOND = ZERO 162 RESID = ONE / EPS 163 RETURN 164 END IF 165 RCOND = ( ONE/ANORM ) / AINVNM 166* 167* Case where both A and AINV are upper triangular: 168* Each element of - A * AINV is computed by taking the dot product 169* of a row of A with a column of AINV. 170* 171 IF( LSAME( UPLO, 'U' ) ) THEN 172 DO 70 I = 1, N 173 ICOL = ( ( I-1 )*I ) / 2 + 1 174* 175* Code when J <= I 176* 177 DO 30 J = 1, I 178 JCOL = ( ( J-1 )*J ) / 2 + 1 179 T = CDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 ) 180 JCOL = JCOL + 2*J - 1 181 KCOL = ICOL - 1 182 DO 10 K = J + 1, I 183 T = T + A( KCOL+K )*AINV( JCOL ) 184 JCOL = JCOL + K 185 10 CONTINUE 186 KCOL = KCOL + 2*I 187 DO 20 K = I + 1, N 188 T = T + A( KCOL )*AINV( JCOL ) 189 KCOL = KCOL + K 190 JCOL = JCOL + K 191 20 CONTINUE 192 WORK( I, J ) = -T 193 30 CONTINUE 194* 195* Code when J > I 196* 197 DO 60 J = I + 1, N 198 JCOL = ( ( J-1 )*J ) / 2 + 1 199 T = CDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 ) 200 JCOL = JCOL - 1 201 KCOL = ICOL + 2*I - 1 202 DO 40 K = I + 1, J 203 T = T + A( KCOL )*AINV( JCOL+K ) 204 KCOL = KCOL + K 205 40 CONTINUE 206 JCOL = JCOL + 2*J 207 DO 50 K = J + 1, N 208 T = T + A( KCOL )*AINV( JCOL ) 209 KCOL = KCOL + K 210 JCOL = JCOL + K 211 50 CONTINUE 212 WORK( I, J ) = -T 213 60 CONTINUE 214 70 CONTINUE 215 ELSE 216* 217* Case where both A and AINV are lower triangular 218* 219 NALL = ( N*( N+1 ) ) / 2 220 DO 140 I = 1, N 221* 222* Code when J <= I 223* 224 ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1 225 DO 100 J = 1, I 226 JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I ) 227 T = CDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 ) 228 KCOL = I 229 JCOL = J 230 DO 80 K = 1, J - 1 231 T = T + A( KCOL )*AINV( JCOL ) 232 JCOL = JCOL + N - K 233 KCOL = KCOL + N - K 234 80 CONTINUE 235 JCOL = JCOL - J 236 DO 90 K = J, I - 1 237 T = T + A( KCOL )*AINV( JCOL+K ) 238 KCOL = KCOL + N - K 239 90 CONTINUE 240 WORK( I, J ) = -T 241 100 CONTINUE 242* 243* Code when J > I 244* 245 ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2 246 DO 130 J = I + 1, N 247 JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1 248 T = CDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 ) 249 KCOL = I 250 JCOL = J 251 DO 110 K = 1, I - 1 252 T = T + A( KCOL )*AINV( JCOL ) 253 JCOL = JCOL + N - K 254 KCOL = KCOL + N - K 255 110 CONTINUE 256 KCOL = KCOL - I 257 DO 120 K = I, J - 1 258 T = T + A( KCOL+K )*AINV( JCOL ) 259 JCOL = JCOL + N - K 260 120 CONTINUE 261 WORK( I, J ) = -T 262 130 CONTINUE 263 140 CONTINUE 264 END IF 265* 266* Add the identity matrix to WORK . 267* 268 DO 150 I = 1, N 269 WORK( I, I ) = WORK( I, I ) + ONE 270 150 CONTINUE 271* 272* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) 273* 274 RESID = CLANGE( '1', N, N, WORK, LDW, RWORK ) 275* 276 RESID = ( ( RESID*RCOND )/EPS ) / REAL( N ) 277* 278 RETURN 279* 280* End of CSPT03 281* 282 END 283