1*> \brief \b DPBT02 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE DPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, 12* RWORK, RESID ) 13* 14* .. Scalar Arguments .. 15* CHARACTER UPLO 16* INTEGER KD, LDA, LDB, LDX, N, NRHS 17* DOUBLE PRECISION RESID 18* .. 19* .. Array Arguments .. 20* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ), 21* $ X( LDX, * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> DPBT02 computes the residual for a solution of a symmetric banded 31*> system of equations A*x = b: 32*> RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS) 33*> where EPS is the machine precision. 34*> \endverbatim 35* 36* Arguments: 37* ========== 38* 39*> \param[in] UPLO 40*> \verbatim 41*> UPLO is CHARACTER*1 42*> Specifies whether the upper or lower triangular part of the 43*> symmetric matrix A is stored: 44*> = 'U': Upper triangular 45*> = 'L': Lower triangular 46*> \endverbatim 47*> 48*> \param[in] N 49*> \verbatim 50*> N is INTEGER 51*> The number of rows and columns of the matrix A. N >= 0. 52*> \endverbatim 53*> 54*> \param[in] KD 55*> \verbatim 56*> KD is INTEGER 57*> The number of super-diagonals of the matrix A if UPLO = 'U', 58*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0. 59*> \endverbatim 60*> 61*> \param[in] NRHS 62*> \verbatim 63*> NRHS is INTEGER 64*> The number of right hand sides. NRHS >= 0. 65*> \endverbatim 66*> 67*> \param[in] A 68*> \verbatim 69*> A is DOUBLE PRECISION array, dimension (LDA,N) 70*> The original symmetric band matrix A. If UPLO = 'U', the 71*> upper triangular part of A is stored as a band matrix; if 72*> UPLO = 'L', the lower triangular part of A is stored. The 73*> columns of the appropriate triangle are stored in the columns 74*> of A and the diagonals of the triangle are stored in the rows 75*> of A. See DPBTRF for further details. 76*> \endverbatim 77*> 78*> \param[in] LDA 79*> \verbatim 80*> LDA is INTEGER. 81*> The leading dimension of the array A. LDA >= max(1,KD+1). 82*> \endverbatim 83*> 84*> \param[in] X 85*> \verbatim 86*> X is DOUBLE PRECISION array, dimension (LDX,NRHS) 87*> The computed solution vectors for the system of linear 88*> equations. 89*> \endverbatim 90*> 91*> \param[in] LDX 92*> \verbatim 93*> LDX is INTEGER 94*> The leading dimension of the array X. LDX >= max(1,N). 95*> \endverbatim 96*> 97*> \param[in,out] B 98*> \verbatim 99*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) 100*> On entry, the right hand side vectors for the system of 101*> linear equations. 102*> On exit, B is overwritten with the difference B - A*X. 103*> \endverbatim 104*> 105*> \param[in] LDB 106*> \verbatim 107*> LDB is INTEGER 108*> The leading dimension of the array B. LDB >= max(1,N). 109*> \endverbatim 110*> 111*> \param[out] RWORK 112*> \verbatim 113*> RWORK is DOUBLE PRECISION array, dimension (N) 114*> \endverbatim 115*> 116*> \param[out] RESID 117*> \verbatim 118*> RESID is DOUBLE PRECISION 119*> The maximum over the number of right hand sides of 120*> norm(B - A*X) / ( norm(A) * norm(X) * EPS ). 121*> \endverbatim 122* 123* Authors: 124* ======== 125* 126*> \author Univ. of Tennessee 127*> \author Univ. of California Berkeley 128*> \author Univ. of Colorado Denver 129*> \author NAG Ltd. 130* 131*> \ingroup double_lin 132* 133* ===================================================================== 134 SUBROUTINE DPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, 135 $ RWORK, RESID ) 136* 137* -- LAPACK test routine -- 138* -- LAPACK is a software package provided by Univ. of Tennessee, -- 139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 140* 141* .. Scalar Arguments .. 142 CHARACTER UPLO 143 INTEGER KD, LDA, LDB, LDX, N, NRHS 144 DOUBLE PRECISION RESID 145* .. 146* .. Array Arguments .. 147 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ), 148 $ X( LDX, * ) 149* .. 150* 151* ===================================================================== 152* 153* .. Parameters .. 154 DOUBLE PRECISION ZERO, ONE 155 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 156* .. 157* .. Local Scalars .. 158 INTEGER J 159 DOUBLE PRECISION ANORM, BNORM, EPS, XNORM 160* .. 161* .. External Functions .. 162 DOUBLE PRECISION DASUM, DLAMCH, DLANSB 163 EXTERNAL DASUM, DLAMCH, DLANSB 164* .. 165* .. External Subroutines .. 166 EXTERNAL DSBMV 167* .. 168* .. Intrinsic Functions .. 169 INTRINSIC MAX 170* .. 171* .. Executable Statements .. 172* 173* Quick exit if N = 0 or NRHS = 0. 174* 175 IF( N.LE.0 .OR. NRHS.LE.0 ) THEN 176 RESID = ZERO 177 RETURN 178 END IF 179* 180* Exit with RESID = 1/EPS if ANORM = 0. 181* 182 EPS = DLAMCH( 'Epsilon' ) 183 ANORM = DLANSB( '1', UPLO, N, KD, A, LDA, RWORK ) 184 IF( ANORM.LE.ZERO ) THEN 185 RESID = ONE / EPS 186 RETURN 187 END IF 188* 189* Compute B - A*X 190* 191 DO 10 J = 1, NRHS 192 CALL DSBMV( UPLO, N, KD, -ONE, A, LDA, X( 1, J ), 1, ONE, 193 $ B( 1, J ), 1 ) 194 10 CONTINUE 195* 196* Compute the maximum over the number of right hand sides of 197* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) 198* 199 RESID = ZERO 200 DO 20 J = 1, NRHS 201 BNORM = DASUM( N, B( 1, J ), 1 ) 202 XNORM = DASUM( N, X( 1, J ), 1 ) 203 IF( XNORM.LE.ZERO ) THEN 204 RESID = ONE / EPS 205 ELSE 206 RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) 207 END IF 208 20 CONTINUE 209* 210 RETURN 211* 212* End of DPBT02 213* 214 END 215