1*> \brief \b SLATTR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE SLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
12*                          WORK, INFO )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          DIAG, TRANS, UPLO
16*       INTEGER            IMAT, INFO, LDA, N
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            ISEED( 4 )
20*       REAL               A( LDA, * ), B( * ), WORK( * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> SLATTR generates a triangular test matrix.
30*> IMAT and UPLO uniquely specify the properties of the test
31*> matrix, which is returned in the array A.
32*> \endverbatim
33*
34*  Arguments:
35*  ==========
36*
37*> \param[in] IMAT
38*> \verbatim
39*>          IMAT is INTEGER
40*>          An integer key describing which matrix to generate for this
41*>          path.
42*> \endverbatim
43*>
44*> \param[in] UPLO
45*> \verbatim
46*>          UPLO is CHARACTER*1
47*>          Specifies whether the matrix A will be upper or lower
48*>          triangular.
49*>          = 'U':  Upper triangular
50*>          = 'L':  Lower triangular
51*> \endverbatim
52*>
53*> \param[in] TRANS
54*> \verbatim
55*>          TRANS is CHARACTER*1
56*>          Specifies whether the matrix or its transpose will be used.
57*>          = 'N':  No transpose
58*>          = 'T':  Transpose
59*>          = 'C':  Conjugate transpose (= Transpose)
60*> \endverbatim
61*>
62*> \param[out] DIAG
63*> \verbatim
64*>          DIAG is CHARACTER*1
65*>          Specifies whether or not the matrix A is unit triangular.
66*>          = 'N':  Non-unit triangular
67*>          = 'U':  Unit triangular
68*> \endverbatim
69*>
70*> \param[in,out] ISEED
71*> \verbatim
72*>          ISEED is INTEGER array, dimension (4)
73*>          The seed vector for the random number generator (used in
74*>          SLATMS).  Modified on exit.
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*>          N is INTEGER
80*>          The order of the matrix to be generated.
81*> \endverbatim
82*>
83*> \param[out] A
84*> \verbatim
85*>          A is REAL array, dimension (LDA,N)
86*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
87*>          upper triangular part of the array A contains the upper
88*>          triangular matrix, and the strictly lower triangular part of
89*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
90*>          triangular part of the array A contains the lower triangular
91*>          matrix, and the strictly upper triangular part of A is not
92*>          referenced.  If DIAG = 'U', the diagonal elements of A are
93*>          set so that A(k,k) = k for 1 <= k <= n.
94*> \endverbatim
95*>
96*> \param[in] LDA
97*> \verbatim
98*>          LDA is INTEGER
99*>          The leading dimension of the array A.  LDA >= max(1,N).
100*> \endverbatim
101*>
102*> \param[out] B
103*> \verbatim
104*>          B is REAL array, dimension (N)
105*>          The right hand side vector, if IMAT > 10.
106*> \endverbatim
107*>
108*> \param[out] WORK
109*> \verbatim
110*>          WORK is REAL array, dimension (3*N)
111*> \endverbatim
112*>
113*> \param[out] INFO
114*> \verbatim
115*>          INFO is INTEGER
116*>          = 0:  successful exit
117*>          < 0: if INFO = -k, the k-th argument had an illegal value
118*> \endverbatim
119*
120*  Authors:
121*  ========
122*
123*> \author Univ. of Tennessee
124*> \author Univ. of California Berkeley
125*> \author Univ. of Colorado Denver
126*> \author NAG Ltd.
127*
128*> \ingroup single_lin
129*
130*  =====================================================================
131      SUBROUTINE SLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
132     $                   WORK, INFO )
133*
134*  -- LAPACK test routine --
135*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
136*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
137*
138*     .. Scalar Arguments ..
139      CHARACTER          DIAG, TRANS, UPLO
140      INTEGER            IMAT, INFO, LDA, N
141*     ..
142*     .. Array Arguments ..
143      INTEGER            ISEED( 4 )
144      REAL               A( LDA, * ), B( * ), WORK( * )
145*     ..
146*
147*  =====================================================================
148*
149*     .. Parameters ..
150      REAL               ONE, TWO, ZERO
151      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
152*     ..
153*     .. Local Scalars ..
154      LOGICAL            UPPER
155      CHARACTER          DIST, TYPE
156      CHARACTER*3        PATH
157      INTEGER            I, IY, J, JCOUNT, KL, KU, MODE
158      REAL               ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, PLUS1,
159     $                   PLUS2, RA, RB, REXP, S, SFAC, SMLNUM, STAR1,
160     $                   TEXP, TLEFT, TSCAL, ULP, UNFL, X, Y, Z
161*     ..
162*     .. External Functions ..
163      LOGICAL            LSAME
164      INTEGER            ISAMAX
165      REAL               SLAMCH, SLARND
166      EXTERNAL           LSAME, ISAMAX, SLAMCH, SLARND
167*     ..
168*     .. External Subroutines ..
169      EXTERNAL           SCOPY, SLABAD, SLARNV, SLATB4, SLATMS, SROT,
170     $                   SROTG, SSCAL, SSWAP
171*     ..
172*     .. Intrinsic Functions ..
173      INTRINSIC          ABS, MAX, REAL, SIGN, SQRT
174*     ..
175*     .. Executable Statements ..
176*
177      PATH( 1: 1 ) = 'Single precision'
178      PATH( 2: 3 ) = 'TR'
179      UNFL = SLAMCH( 'Safe minimum' )
180      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
181      SMLNUM = UNFL
182      BIGNUM = ( ONE-ULP ) / SMLNUM
183      CALL SLABAD( SMLNUM, BIGNUM )
184      IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
185         DIAG = 'U'
186      ELSE
187         DIAG = 'N'
188      END IF
189      INFO = 0
190*
191*     Quick return if N.LE.0.
192*
193      IF( N.LE.0 )
194     $   RETURN
195*
196*     Call SLATB4 to set parameters for SLATMS.
197*
198      UPPER = LSAME( UPLO, 'U' )
199      IF( UPPER ) THEN
200         CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
201     $                CNDNUM, DIST )
202      ELSE
203         CALL SLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
204     $                CNDNUM, DIST )
205      END IF
206*
207*     IMAT <= 6:  Non-unit triangular matrix
208*
209      IF( IMAT.LE.6 ) THEN
210         CALL SLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
211     $                KL, KU, 'No packing', A, LDA, WORK, INFO )
212*
213*     IMAT > 6:  Unit triangular matrix
214*     The diagonal is deliberately set to something other than 1.
215*
216*     IMAT = 7:  Matrix is the identity
217*
218      ELSE IF( IMAT.EQ.7 ) THEN
219         IF( UPPER ) THEN
220            DO 20 J = 1, N
221               DO 10 I = 1, J - 1
222                  A( I, J ) = ZERO
223   10          CONTINUE
224               A( J, J ) = J
225   20       CONTINUE
226         ELSE
227            DO 40 J = 1, N
228               A( J, J ) = J
229               DO 30 I = J + 1, N
230                  A( I, J ) = ZERO
231   30          CONTINUE
232   40       CONTINUE
233         END IF
234*
235*     IMAT > 7:  Non-trivial unit triangular matrix
236*
237*     Generate a unit triangular matrix T with condition CNDNUM by
238*     forming a triangular matrix with known singular values and
239*     filling in the zero entries with Givens rotations.
240*
241      ELSE IF( IMAT.LE.10 ) THEN
242         IF( UPPER ) THEN
243            DO 60 J = 1, N
244               DO 50 I = 1, J - 1
245                  A( I, J ) = ZERO
246   50          CONTINUE
247               A( J, J ) = J
248   60       CONTINUE
249         ELSE
250            DO 80 J = 1, N
251               A( J, J ) = J
252               DO 70 I = J + 1, N
253                  A( I, J ) = ZERO
254   70          CONTINUE
255   80       CONTINUE
256         END IF
257*
258*        Since the trace of a unit triangular matrix is 1, the product
259*        of its singular values must be 1.  Let s = sqrt(CNDNUM),
260*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
261*        The following triangular matrix has singular values s, 1, 1,
262*        ..., 1, 1/s:
263*
264*        1  y  y  y  ...  y  y  z
265*           1  0  0  ...  0  0  y
266*              1  0  ...  0  0  y
267*                 .  ...  .  .  .
268*                     .   .  .  .
269*                         1  0  y
270*                            1  y
271*                               1
272*
273*        To fill in the zeros, we first multiply by a matrix with small
274*        condition number of the form
275*
276*        1  0  0  0  0  ...
277*           1  +  *  0  0  ...
278*              1  +  0  0  0
279*                 1  +  *  0  0
280*                    1  +  0  0
281*                       ...
282*                          1  +  0
283*                             1  0
284*                                1
285*
286*        Each element marked with a '*' is formed by taking the product
287*        of the adjacent elements marked with '+'.  The '*'s can be
288*        chosen freely, and the '+'s are chosen so that the inverse of
289*        T will have elements of the same magnitude as T.  If the *'s in
290*        both T and inv(T) have small magnitude, T is well conditioned.
291*        The two offdiagonals of T are stored in WORK.
292*
293*        The product of these two matrices has the form
294*
295*        1  y  y  y  y  y  .  y  y  z
296*           1  +  *  0  0  .  0  0  y
297*              1  +  0  0  .  0  0  y
298*                 1  +  *  .  .  .  .
299*                    1  +  .  .  .  .
300*                       .  .  .  .  .
301*                          .  .  .  .
302*                             1  +  y
303*                                1  y
304*                                   1
305*
306*        Now we multiply by Givens rotations, using the fact that
307*
308*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ]
309*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ]
310*        and
311*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ]
312*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ]
313*
314*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
315*
316         STAR1 = 0.25
317         SFAC = 0.5
318         PLUS1 = SFAC
319         DO 90 J = 1, N, 2
320            PLUS2 = STAR1 / PLUS1
321            WORK( J ) = PLUS1
322            WORK( N+J ) = STAR1
323            IF( J+1.LE.N ) THEN
324               WORK( J+1 ) = PLUS2
325               WORK( N+J+1 ) = ZERO
326               PLUS1 = STAR1 / PLUS2
327               REXP = SLARND( 2, ISEED )
328               STAR1 = STAR1*( SFAC**REXP )
329               IF( REXP.LT.ZERO ) THEN
330                  STAR1 = -SFAC**( ONE-REXP )
331               ELSE
332                  STAR1 = SFAC**( ONE+REXP )
333               END IF
334            END IF
335   90    CONTINUE
336*
337         X = SQRT( CNDNUM ) - 1 / SQRT( CNDNUM )
338         IF( N.GT.2 ) THEN
339            Y = SQRT( 2. / ( N-2 ) )*X
340         ELSE
341            Y = ZERO
342         END IF
343         Z = X*X
344*
345         IF( UPPER ) THEN
346            IF( N.GT.3 ) THEN
347               CALL SCOPY( N-3, WORK, 1, A( 2, 3 ), LDA+1 )
348               IF( N.GT.4 )
349     $            CALL SCOPY( N-4, WORK( N+1 ), 1, A( 2, 4 ), LDA+1 )
350            END IF
351            DO 100 J = 2, N - 1
352               A( 1, J ) = Y
353               A( J, N ) = Y
354  100       CONTINUE
355            A( 1, N ) = Z
356         ELSE
357            IF( N.GT.3 ) THEN
358               CALL SCOPY( N-3, WORK, 1, A( 3, 2 ), LDA+1 )
359               IF( N.GT.4 )
360     $            CALL SCOPY( N-4, WORK( N+1 ), 1, A( 4, 2 ), LDA+1 )
361            END IF
362            DO 110 J = 2, N - 1
363               A( J, 1 ) = Y
364               A( N, J ) = Y
365  110       CONTINUE
366            A( N, 1 ) = Z
367         END IF
368*
369*        Fill in the zeros using Givens rotations.
370*
371         IF( UPPER ) THEN
372            DO 120 J = 1, N - 1
373               RA = A( J, J+1 )
374               RB = 2.0
375               CALL SROTG( RA, RB, C, S )
376*
377*              Multiply by [ c  s; -s  c] on the left.
378*
379               IF( N.GT.J+1 )
380     $            CALL SROT( N-J-1, A( J, J+2 ), LDA, A( J+1, J+2 ),
381     $                       LDA, C, S )
382*
383*              Multiply by [-c -s;  s -c] on the right.
384*
385               IF( J.GT.1 )
386     $            CALL SROT( J-1, A( 1, J+1 ), 1, A( 1, J ), 1, -C, -S )
387*
388*              Negate A(J,J+1).
389*
390               A( J, J+1 ) = -A( J, J+1 )
391  120       CONTINUE
392         ELSE
393            DO 130 J = 1, N - 1
394               RA = A( J+1, J )
395               RB = 2.0
396               CALL SROTG( RA, RB, C, S )
397*
398*              Multiply by [ c -s;  s  c] on the right.
399*
400               IF( N.GT.J+1 )
401     $            CALL SROT( N-J-1, A( J+2, J+1 ), 1, A( J+2, J ), 1, C,
402     $                       -S )
403*
404*              Multiply by [-c  s; -s -c] on the left.
405*
406               IF( J.GT.1 )
407     $            CALL SROT( J-1, A( J, 1 ), LDA, A( J+1, 1 ), LDA, -C,
408     $                       S )
409*
410*              Negate A(J+1,J).
411*
412               A( J+1, J ) = -A( J+1, J )
413  130       CONTINUE
414         END IF
415*
416*     IMAT > 10:  Pathological test cases.  These triangular matrices
417*     are badly scaled or badly conditioned, so when used in solving a
418*     triangular system they may cause overflow in the solution vector.
419*
420      ELSE IF( IMAT.EQ.11 ) THEN
421*
422*        Type 11:  Generate a triangular matrix with elements between
423*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
424*        Make the right hand side large so that it requires scaling.
425*
426         IF( UPPER ) THEN
427            DO 140 J = 1, N
428               CALL SLARNV( 2, ISEED, J, A( 1, J ) )
429               A( J, J ) = SIGN( TWO, A( J, J ) )
430  140       CONTINUE
431         ELSE
432            DO 150 J = 1, N
433               CALL SLARNV( 2, ISEED, N-J+1, A( J, J ) )
434               A( J, J ) = SIGN( TWO, A( J, J ) )
435  150       CONTINUE
436         END IF
437*
438*        Set the right hand side so that the largest value is BIGNUM.
439*
440         CALL SLARNV( 2, ISEED, N, B )
441         IY = ISAMAX( N, B, 1 )
442         BNORM = ABS( B( IY ) )
443         BSCAL = BIGNUM / MAX( ONE, BNORM )
444         CALL SSCAL( N, BSCAL, B, 1 )
445*
446      ELSE IF( IMAT.EQ.12 ) THEN
447*
448*        Type 12:  Make the first diagonal element in the solve small to
449*        cause immediate overflow when dividing by T(j,j).
450*        In type 12, the offdiagonal elements are small (CNORM(j) < 1).
451*
452         CALL SLARNV( 2, ISEED, N, B )
453         TSCAL = ONE / MAX( ONE, REAL( N-1 ) )
454         IF( UPPER ) THEN
455            DO 160 J = 1, N
456               CALL SLARNV( 2, ISEED, J, A( 1, J ) )
457               CALL SSCAL( J-1, TSCAL, A( 1, J ), 1 )
458               A( J, J ) = SIGN( ONE, A( J, J ) )
459  160       CONTINUE
460            A( N, N ) = SMLNUM*A( N, N )
461         ELSE
462            DO 170 J = 1, N
463               CALL SLARNV( 2, ISEED, N-J+1, A( J, J ) )
464               IF( N.GT.J )
465     $            CALL SSCAL( N-J, TSCAL, A( J+1, J ), 1 )
466               A( J, J ) = SIGN( ONE, A( J, J ) )
467  170       CONTINUE
468            A( 1, 1 ) = SMLNUM*A( 1, 1 )
469         END IF
470*
471      ELSE IF( IMAT.EQ.13 ) THEN
472*
473*        Type 13:  Make the first diagonal element in the solve small to
474*        cause immediate overflow when dividing by T(j,j).
475*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
476*
477         CALL SLARNV( 2, ISEED, N, B )
478         IF( UPPER ) THEN
479            DO 180 J = 1, N
480               CALL SLARNV( 2, ISEED, J, A( 1, J ) )
481               A( J, J ) = SIGN( ONE, A( J, J ) )
482  180       CONTINUE
483            A( N, N ) = SMLNUM*A( N, N )
484         ELSE
485            DO 190 J = 1, N
486               CALL SLARNV( 2, ISEED, N-J+1, A( J, J ) )
487               A( J, J ) = SIGN( ONE, A( J, J ) )
488  190       CONTINUE
489            A( 1, 1 ) = SMLNUM*A( 1, 1 )
490         END IF
491*
492      ELSE IF( IMAT.EQ.14 ) THEN
493*
494*        Type 14:  T is diagonal with small numbers on the diagonal to
495*        make the growth factor underflow, but a small right hand side
496*        chosen so that the solution does not overflow.
497*
498         IF( UPPER ) THEN
499            JCOUNT = 1
500            DO 210 J = N, 1, -1
501               DO 200 I = 1, J - 1
502                  A( I, J ) = ZERO
503  200          CONTINUE
504               IF( JCOUNT.LE.2 ) THEN
505                  A( J, J ) = SMLNUM
506               ELSE
507                  A( J, J ) = ONE
508               END IF
509               JCOUNT = JCOUNT + 1
510               IF( JCOUNT.GT.4 )
511     $            JCOUNT = 1
512  210       CONTINUE
513         ELSE
514            JCOUNT = 1
515            DO 230 J = 1, N
516               DO 220 I = J + 1, N
517                  A( I, J ) = ZERO
518  220          CONTINUE
519               IF( JCOUNT.LE.2 ) THEN
520                  A( J, J ) = SMLNUM
521               ELSE
522                  A( J, J ) = ONE
523               END IF
524               JCOUNT = JCOUNT + 1
525               IF( JCOUNT.GT.4 )
526     $            JCOUNT = 1
527  230       CONTINUE
528         END IF
529*
530*        Set the right hand side alternately zero and small.
531*
532         IF( UPPER ) THEN
533            B( 1 ) = ZERO
534            DO 240 I = N, 2, -2
535               B( I ) = ZERO
536               B( I-1 ) = SMLNUM
537  240       CONTINUE
538         ELSE
539            B( N ) = ZERO
540            DO 250 I = 1, N - 1, 2
541               B( I ) = ZERO
542               B( I+1 ) = SMLNUM
543  250       CONTINUE
544         END IF
545*
546      ELSE IF( IMAT.EQ.15 ) THEN
547*
548*        Type 15:  Make the diagonal elements small to cause gradual
549*        overflow when dividing by T(j,j).  To control the amount of
550*        scaling needed, the matrix is bidiagonal.
551*
552         TEXP = ONE / MAX( ONE, REAL( N-1 ) )
553         TSCAL = SMLNUM**TEXP
554         CALL SLARNV( 2, ISEED, N, B )
555         IF( UPPER ) THEN
556            DO 270 J = 1, N
557               DO 260 I = 1, J - 2
558                  A( I, J ) = 0.
559  260          CONTINUE
560               IF( J.GT.1 )
561     $            A( J-1, J ) = -ONE
562               A( J, J ) = TSCAL
563  270       CONTINUE
564            B( N ) = ONE
565         ELSE
566            DO 290 J = 1, N
567               DO 280 I = J + 2, N
568                  A( I, J ) = 0.
569  280          CONTINUE
570               IF( J.LT.N )
571     $            A( J+1, J ) = -ONE
572               A( J, J ) = TSCAL
573  290       CONTINUE
574            B( 1 ) = ONE
575         END IF
576*
577      ELSE IF( IMAT.EQ.16 ) THEN
578*
579*        Type 16:  One zero diagonal element.
580*
581         IY = N / 2 + 1
582         IF( UPPER ) THEN
583            DO 300 J = 1, N
584               CALL SLARNV( 2, ISEED, J, A( 1, J ) )
585               IF( J.NE.IY ) THEN
586                  A( J, J ) = SIGN( TWO, A( J, J ) )
587               ELSE
588                  A( J, J ) = ZERO
589               END IF
590  300       CONTINUE
591         ELSE
592            DO 310 J = 1, N
593               CALL SLARNV( 2, ISEED, N-J+1, A( J, J ) )
594               IF( J.NE.IY ) THEN
595                  A( J, J ) = SIGN( TWO, A( J, J ) )
596               ELSE
597                  A( J, J ) = ZERO
598               END IF
599  310       CONTINUE
600         END IF
601         CALL SLARNV( 2, ISEED, N, B )
602         CALL SSCAL( N, TWO, B, 1 )
603*
604      ELSE IF( IMAT.EQ.17 ) THEN
605*
606*        Type 17:  Make the offdiagonal elements large to cause overflow
607*        when adding a column of T.  In the non-transposed case, the
608*        matrix is constructed to cause overflow when adding a column in
609*        every other step.
610*
611         TSCAL = UNFL / ULP
612         TSCAL = ( ONE-ULP ) / TSCAL
613         DO 330 J = 1, N
614            DO 320 I = 1, N
615               A( I, J ) = 0.
616  320       CONTINUE
617  330    CONTINUE
618         TEXP = ONE
619         IF( UPPER ) THEN
620            DO 340 J = N, 2, -2
621               A( 1, J ) = -TSCAL / REAL( N+1 )
622               A( J, J ) = ONE
623               B( J ) = TEXP*( ONE-ULP )
624               A( 1, J-1 ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
625               A( J-1, J-1 ) = ONE
626               B( J-1 ) = TEXP*REAL( N*N+N-1 )
627               TEXP = TEXP*2.
628  340       CONTINUE
629            B( 1 ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
630         ELSE
631            DO 350 J = 1, N - 1, 2
632               A( N, J ) = -TSCAL / REAL( N+1 )
633               A( J, J ) = ONE
634               B( J ) = TEXP*( ONE-ULP )
635               A( N, J+1 ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
636               A( J+1, J+1 ) = ONE
637               B( J+1 ) = TEXP*REAL( N*N+N-1 )
638               TEXP = TEXP*2.
639  350       CONTINUE
640            B( N ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
641         END IF
642*
643      ELSE IF( IMAT.EQ.18 ) THEN
644*
645*        Type 18:  Generate a unit triangular matrix with elements
646*        between -1 and 1, and make the right hand side large so that it
647*        requires scaling.
648*
649         IF( UPPER ) THEN
650            DO 360 J = 1, N
651               CALL SLARNV( 2, ISEED, J-1, A( 1, J ) )
652               A( J, J ) = ZERO
653  360       CONTINUE
654         ELSE
655            DO 370 J = 1, N
656               IF( J.LT.N )
657     $            CALL SLARNV( 2, ISEED, N-J, A( J+1, J ) )
658               A( J, J ) = ZERO
659  370       CONTINUE
660         END IF
661*
662*        Set the right hand side so that the largest value is BIGNUM.
663*
664         CALL SLARNV( 2, ISEED, N, B )
665         IY = ISAMAX( N, B, 1 )
666         BNORM = ABS( B( IY ) )
667         BSCAL = BIGNUM / MAX( ONE, BNORM )
668         CALL SSCAL( N, BSCAL, B, 1 )
669*
670      ELSE IF( IMAT.EQ.19 ) THEN
671*
672*        Type 19:  Generate a triangular matrix with elements between
673*        BIGNUM/(n-1) and BIGNUM so that at least one of the column
674*        norms will exceed BIGNUM.
675*        1/3/91:  SLATRS no longer can handle this case
676*
677         TLEFT = BIGNUM / MAX( ONE, REAL( N-1 ) )
678         TSCAL = BIGNUM*( REAL( N-1 ) / MAX( ONE, REAL( N ) ) )
679         IF( UPPER ) THEN
680            DO 390 J = 1, N
681               CALL SLARNV( 2, ISEED, J, A( 1, J ) )
682               DO 380 I = 1, J
683                  A( I, J ) = SIGN( TLEFT, A( I, J ) ) + TSCAL*A( I, J )
684  380          CONTINUE
685  390       CONTINUE
686         ELSE
687            DO 410 J = 1, N
688               CALL SLARNV( 2, ISEED, N-J+1, A( J, J ) )
689               DO 400 I = J, N
690                  A( I, J ) = SIGN( TLEFT, A( I, J ) ) + TSCAL*A( I, J )
691  400          CONTINUE
692  410       CONTINUE
693         END IF
694         CALL SLARNV( 2, ISEED, N, B )
695         CALL SSCAL( N, TWO, B, 1 )
696      END IF
697*
698*     Flip the matrix if the transpose will be used.
699*
700      IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
701         IF( UPPER ) THEN
702            DO 420 J = 1, N / 2
703               CALL SSWAP( N-2*J+1, A( J, J ), LDA, A( J+1, N-J+1 ),
704     $                     -1 )
705  420       CONTINUE
706         ELSE
707            DO 430 J = 1, N / 2
708               CALL SSWAP( N-2*J+1, A( J, J ), 1, A( N-J+1, J+1 ),
709     $                     -LDA )
710  430       CONTINUE
711         END IF
712      END IF
713*
714      RETURN
715*
716*     End of SLATTR
717*
718      END
719