1*> \brief \b STPLQT 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download STPLQT + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stplqt.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stplqt.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stplqt.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE STPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, LDT, N, M, L, MB 26* .. 27* .. Array Arguments .. 28* REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> STPLQT computes a blocked LQ factorization of a real 38*> "triangular-pentagonal" matrix C, which is composed of a 39*> triangular block A and pentagonal block B, using the compact 40*> WY representation for Q. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] M 47*> \verbatim 48*> M is INTEGER 49*> The number of rows of the matrix B, and the order of the 50*> triangular matrix A. 51*> M >= 0. 52*> \endverbatim 53*> 54*> \param[in] N 55*> \verbatim 56*> N is INTEGER 57*> The number of columns of the matrix B. 58*> N >= 0. 59*> \endverbatim 60*> 61*> \param[in] L 62*> \verbatim 63*> L is INTEGER 64*> The number of rows of the lower trapezoidal part of B. 65*> MIN(M,N) >= L >= 0. See Further Details. 66*> \endverbatim 67*> 68*> \param[in] MB 69*> \verbatim 70*> MB is INTEGER 71*> The block size to be used in the blocked QR. M >= MB >= 1. 72*> \endverbatim 73*> 74*> \param[in,out] A 75*> \verbatim 76*> A is REAL array, dimension (LDA,N) 77*> On entry, the lower triangular N-by-N matrix A. 78*> On exit, the elements on and below the diagonal of the array 79*> contain the lower triangular matrix L. 80*> \endverbatim 81*> 82*> \param[in] LDA 83*> \verbatim 84*> LDA is INTEGER 85*> The leading dimension of the array A. LDA >= max(1,N). 86*> \endverbatim 87*> 88*> \param[in,out] B 89*> \verbatim 90*> B is REAL array, dimension (LDB,N) 91*> On entry, the pentagonal M-by-N matrix B. The first N-L columns 92*> are rectangular, and the last L columns are lower trapezoidal. 93*> On exit, B contains the pentagonal matrix V. See Further Details. 94*> \endverbatim 95*> 96*> \param[in] LDB 97*> \verbatim 98*> LDB is INTEGER 99*> The leading dimension of the array B. LDB >= max(1,M). 100*> \endverbatim 101*> 102*> \param[out] T 103*> \verbatim 104*> T is REAL array, dimension (LDT,N) 105*> The lower triangular block reflectors stored in compact form 106*> as a sequence of upper triangular blocks. See Further Details. 107*> \endverbatim 108*> 109*> \param[in] LDT 110*> \verbatim 111*> LDT is INTEGER 112*> The leading dimension of the array T. LDT >= MB. 113*> \endverbatim 114*> 115*> \param[out] WORK 116*> \verbatim 117*> WORK is REAL array, dimension (MB*M) 118*> \endverbatim 119*> 120*> \param[out] INFO 121*> \verbatim 122*> INFO is INTEGER 123*> = 0: successful exit 124*> < 0: if INFO = -i, the i-th argument had an illegal value 125*> \endverbatim 126* 127* Authors: 128* ======== 129* 130*> \author Univ. of Tennessee 131*> \author Univ. of California Berkeley 132*> \author Univ. of Colorado Denver 133*> \author NAG Ltd. 134* 135*> \ingroup doubleOTHERcomputational 136* 137*> \par Further Details: 138* ===================== 139*> 140*> \verbatim 141*> 142*> The input matrix C is a M-by-(M+N) matrix 143*> 144*> C = [ A ] [ B ] 145*> 146*> 147*> where A is an lower triangular N-by-N matrix, and B is M-by-N pentagonal 148*> matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L 149*> upper trapezoidal matrix B2: 150*> [ B ] = [ B1 ] [ B2 ] 151*> [ B1 ] <- M-by-(N-L) rectangular 152*> [ B2 ] <- M-by-L upper trapezoidal. 153*> 154*> The lower trapezoidal matrix B2 consists of the first L columns of a 155*> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, 156*> B is rectangular M-by-N; if M=L=N, B is lower triangular. 157*> 158*> The matrix W stores the elementary reflectors H(i) in the i-th row 159*> above the diagonal (of A) in the M-by-(M+N) input matrix C 160*> [ C ] = [ A ] [ B ] 161*> [ A ] <- lower triangular N-by-N 162*> [ B ] <- M-by-N pentagonal 163*> 164*> so that W can be represented as 165*> [ W ] = [ I ] [ V ] 166*> [ I ] <- identity, N-by-N 167*> [ V ] <- M-by-N, same form as B. 168*> 169*> Thus, all of information needed for W is contained on exit in B, which 170*> we call V above. Note that V has the same form as B; that is, 171*> [ V ] = [ V1 ] [ V2 ] 172*> [ V1 ] <- M-by-(N-L) rectangular 173*> [ V2 ] <- M-by-L lower trapezoidal. 174*> 175*> The rows of V represent the vectors which define the H(i)'s. 176*> 177*> The number of blocks is B = ceiling(M/MB), where each 178*> block is of order MB except for the last block, which is of order 179*> IB = M - (M-1)*MB. For each of the B blocks, a upper triangular block 180*> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB 181*> for the last block) T's are stored in the MB-by-N matrix T as 182*> 183*> T = [T1 T2 ... TB]. 184*> \endverbatim 185*> 186* ===================================================================== 187 SUBROUTINE STPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK, 188 $ INFO ) 189* 190* -- LAPACK computational routine -- 191* -- LAPACK is a software package provided by Univ. of Tennessee, -- 192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 193* 194* .. Scalar Arguments .. 195 INTEGER INFO, LDA, LDB, LDT, N, M, L, MB 196* .. 197* .. Array Arguments .. 198 REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 199* .. 200* 201* ===================================================================== 202* 203* .. 204* .. Local Scalars .. 205 INTEGER I, IB, LB, NB, IINFO 206* .. 207* .. External Subroutines .. 208 EXTERNAL STPLQT2, STPRFB, XERBLA 209* .. 210* .. Executable Statements .. 211* 212* Test the input arguments 213* 214 INFO = 0 215 IF( M.LT.0 ) THEN 216 INFO = -1 217 ELSE IF( N.LT.0 ) THEN 218 INFO = -2 219 ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN 220 INFO = -3 221 ELSE IF( MB.LT.1 .OR. (MB.GT.M .AND. M.GT.0)) THEN 222 INFO = -4 223 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 224 INFO = -6 225 ELSE IF( LDB.LT.MAX( 1, M ) ) THEN 226 INFO = -8 227 ELSE IF( LDT.LT.MB ) THEN 228 INFO = -10 229 END IF 230 IF( INFO.NE.0 ) THEN 231 CALL XERBLA( 'STPLQT', -INFO ) 232 RETURN 233 END IF 234* 235* Quick return if possible 236* 237 IF( M.EQ.0 .OR. N.EQ.0 ) RETURN 238* 239 DO I = 1, M, MB 240* 241* Compute the QR factorization of the current block 242* 243 IB = MIN( M-I+1, MB ) 244 NB = MIN( N-L+I+IB-1, N ) 245 IF( I.GE.L ) THEN 246 LB = 0 247 ELSE 248 LB = NB-N+L-I+1 249 END IF 250* 251 CALL STPLQT2( IB, NB, LB, A(I,I), LDA, B( I, 1 ), LDB, 252 $ T(1, I ), LDT, IINFO ) 253* 254* Update by applying H**T to B(I+IB:M,:) from the right 255* 256 IF( I+IB.LE.M ) THEN 257 CALL STPRFB( 'R', 'N', 'F', 'R', M-I-IB+1, NB, IB, LB, 258 $ B( I, 1 ), LDB, T( 1, I ), LDT, 259 $ A( I+IB, I ), LDA, B( I+IB, 1 ), LDB, 260 $ WORK, M-I-IB+1) 261 END IF 262 END DO 263 RETURN 264* 265* End of STPLQT 266* 267 END 268