1*> \brief \b ZHPT01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
12*
13*       .. Scalar Arguments ..
14*       CHARACTER          UPLO
15*       INTEGER            LDC, N
16*       DOUBLE PRECISION   RESID
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            IPIV( * )
20*       DOUBLE PRECISION   RWORK( * )
21*       COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
22*       ..
23*
24*
25*> \par Purpose:
26*  =============
27*>
28*> \verbatim
29*>
30*> ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
31*> block L*D*L' or U*D*U' factorization and computes the residual
32*>    norm( C - A ) / ( N * norm(A) * EPS ),
33*> where C is the reconstructed matrix, EPS is the machine epsilon,
34*> L' is the conjugate transpose of L, and U' is the conjugate transpose
35*> of U.
36*> \endverbatim
37*
38*  Arguments:
39*  ==========
40*
41*> \param[in] UPLO
42*> \verbatim
43*>          UPLO is CHARACTER*1
44*>          Specifies whether the upper or lower triangular part of the
45*>          Hermitian matrix A is stored:
46*>          = 'U':  Upper triangular
47*>          = 'L':  Lower triangular
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*>          N is INTEGER
53*>          The number of rows and columns of the matrix A.  N >= 0.
54*> \endverbatim
55*>
56*> \param[in] A
57*> \verbatim
58*>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
59*>          The original Hermitian matrix A, stored as a packed
60*>          triangular matrix.
61*> \endverbatim
62*>
63*> \param[in] AFAC
64*> \verbatim
65*>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
66*>          The factored form of the matrix A, stored as a packed
67*>          triangular matrix.  AFAC contains the block diagonal matrix D
68*>          and the multipliers used to obtain the factor L or U from the
69*>          block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
70*> \endverbatim
71*>
72*> \param[in] IPIV
73*> \verbatim
74*>          IPIV is INTEGER array, dimension (N)
75*>          The pivot indices from ZHPTRF.
76*> \endverbatim
77*>
78*> \param[out] C
79*> \verbatim
80*>          C is COMPLEX*16 array, dimension (LDC,N)
81*> \endverbatim
82*>
83*> \param[in] LDC
84*> \verbatim
85*>          LDC is INTEGER
86*>          The leading dimension of the array C.  LDC >= max(1,N).
87*> \endverbatim
88*>
89*> \param[out] RWORK
90*> \verbatim
91*>          RWORK is DOUBLE PRECISION array, dimension (N)
92*> \endverbatim
93*>
94*> \param[out] RESID
95*> \verbatim
96*>          RESID is DOUBLE PRECISION
97*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
98*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
99*> \endverbatim
100*
101*  Authors:
102*  ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup complex16_lin
110*
111*  =====================================================================
112      SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
113*
114*  -- LAPACK test routine --
115*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
116*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117*
118*     .. Scalar Arguments ..
119      CHARACTER          UPLO
120      INTEGER            LDC, N
121      DOUBLE PRECISION   RESID
122*     ..
123*     .. Array Arguments ..
124      INTEGER            IPIV( * )
125      DOUBLE PRECISION   RWORK( * )
126      COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
127*     ..
128*
129*  =====================================================================
130*
131*     .. Parameters ..
132      DOUBLE PRECISION   ZERO, ONE
133      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
134      COMPLEX*16         CZERO, CONE
135      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
136     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
137*     ..
138*     .. Local Scalars ..
139      INTEGER            I, INFO, J, JC
140      DOUBLE PRECISION   ANORM, EPS
141*     ..
142*     .. External Functions ..
143      LOGICAL            LSAME
144      DOUBLE PRECISION   DLAMCH, ZLANHE, ZLANHP
145      EXTERNAL           LSAME, DLAMCH, ZLANHE, ZLANHP
146*     ..
147*     .. External Subroutines ..
148      EXTERNAL           ZLASET, ZLAVHP
149*     ..
150*     .. Intrinsic Functions ..
151      INTRINSIC          DBLE, DIMAG
152*     ..
153*     .. Executable Statements ..
154*
155*     Quick exit if N = 0.
156*
157      IF( N.LE.0 ) THEN
158         RESID = ZERO
159         RETURN
160      END IF
161*
162*     Determine EPS and the norm of A.
163*
164      EPS = DLAMCH( 'Epsilon' )
165      ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
166*
167*     Check the imaginary parts of the diagonal elements and return with
168*     an error code if any are nonzero.
169*
170      JC = 1
171      IF( LSAME( UPLO, 'U' ) ) THEN
172         DO 10 J = 1, N
173            IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
174               RESID = ONE / EPS
175               RETURN
176            END IF
177            JC = JC + J + 1
178   10    CONTINUE
179      ELSE
180         DO 20 J = 1, N
181            IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
182               RESID = ONE / EPS
183               RETURN
184            END IF
185            JC = JC + N - J + 1
186   20    CONTINUE
187      END IF
188*
189*     Initialize C to the identity matrix.
190*
191      CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
192*
193*     Call ZLAVHP to form the product D * U' (or D * L' ).
194*
195      CALL ZLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
196     $             LDC, INFO )
197*
198*     Call ZLAVHP again to multiply by U ( or L ).
199*
200      CALL ZLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
201     $             LDC, INFO )
202*
203*     Compute the difference  C - A .
204*
205      IF( LSAME( UPLO, 'U' ) ) THEN
206         JC = 0
207         DO 40 J = 1, N
208            DO 30 I = 1, J - 1
209               C( I, J ) = C( I, J ) - A( JC+I )
210   30       CONTINUE
211            C( J, J ) = C( J, J ) - DBLE( A( JC+J ) )
212            JC = JC + J
213   40    CONTINUE
214      ELSE
215         JC = 1
216         DO 60 J = 1, N
217            C( J, J ) = C( J, J ) - DBLE( A( JC ) )
218            DO 50 I = J + 1, N
219               C( I, J ) = C( I, J ) - A( JC+I-J )
220   50       CONTINUE
221            JC = JC + N - J + 1
222   60    CONTINUE
223      END IF
224*
225*     Compute norm( C - A ) / ( N * norm(A) * EPS )
226*
227      RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
228*
229      IF( ANORM.LE.ZERO ) THEN
230         IF( RESID.NE.ZERO )
231     $      RESID = ONE / EPS
232      ELSE
233         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
234      END IF
235*
236      RETURN
237*
238*     End of ZHPT01
239*
240      END
241